Asset Pricing in a Lucas Economy with Recursive
Utility Heterogeneous Agents

Hervé Roche*

Departmento de Administracién
Instituto Tecnoldgico Auténomo de México
Av. Camino a Santa Teresa No 930
Col. Héroes de Padierna

10700 México, D.F.

E-mail: hroche@ciep.itam.mx

January 16, 2001

Abstract

We extend the Lucas economy (1978) to the case of preferences a la
Kreps-Porteus (1978) when the dividend (fruit) process follows a geometric
Brownian Motion. In the representative agent case, the equilibrium price
reveals a two-stage mechanism. First, the risk averse agent adjusts down-
ward the average growth rate of dividends to incorporate uncertainty. Then,
the effect of the intertemporal elasticity of substitution (L.LE.S.) depends on
the sign of this adjusted growth rate of dividends. In agreement with Hall
(1988), the paper illustrates the key role played by I.E.S. on the equilibrium
price. The extension to the heterogeneous agents case allows us to analyze
the wealth distribution and its effects on the equilibrium price. Individu-
als who either highly value the future or who are both willing to substitute
consumption over time and display low risk aversion will asymptotically ac-
cumulate all the wealth in the economy. Wealth concentration leads to an
increase in the equilibrium price.
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1. INTRODUCTION

A huge literature in financial economics and macroeconomics has clearly pointed
out the limitations of the Expected Utility Theory in its inability to disentangle
individuals’ willingness to alter their consumption levels across time and individ-
uals’ attitudes towards risk. At an empirical level, when using isoelastic utility
functions, estimations yield an unreasonably high value for the coefficient of rel-
ative risk aversion.

The objective of this paper is to twofold. First, its sheds some additional light
on the effects of risk aversion and intertemporal elasticity of substitution (LE.S.)
on asset prices in a general equilibrium setting. Second, the heterogeneous agents
framework highlights the role played by the discount rate, the LE.S. and risk
aversion on the wealth sharing rules and the asset equilibrium price.

The idea of introducing preferences allowing distinction between LE.S. and
risk aversion is not new in macroeconomics and finance. We now review the
existing literature on the topic and present the main findings of the paper.

1.1. Related Literature

Epstein and Zin (1989) building on the work of Kreps and Porteus (1978) con-
struct a discrete time framework and point out the advantages of using recursive
utility. First of all, an important property of the recursive preferences is that
they exhibit intertemporal consistency. In addition, such preferences take into
account the agents attitude with respect to the temporal resolution of uncer-
tainty. Finally, recursive preferences disentangle the effects of I.LE.S. and risk
aversion. Agents’ preferences are defined in a recursive way as follows. At period
t, the agent determines the certainty equivalent m(~Viy | F:) of the next period
lifetime utility Vz;1 given the information structure F;. In a second stage, she
combines the certainty equivalent m with the current period level of consump-
tion ¢; via an aggregator W such that V; = W (¢;, m("Viq1 | Ft)). The certainty
equivalent m encapsulates risk aversion whereas the aggregator W embodies the
intertemporal substitution of consumption. These preferences have been used for
instance to try to solve the equity premium puzzle (see Weil 1989 and 1990).
In two papers, Duffie and Epstein (1992a) and (1992b) present stochastic differ-
ential utility which adapts the concept of recursive utility to a continuous time
setting and they explore its implications for asset prices. Shroder and Costias
(1999) develop a gradient approach to characterize optimal portfolio allocations
and consumption plans that maximize stochastic differential utility. For com-
plete markets, Dumas, Uppal and Wang (2000), using the concept of variational



utility’, construct a social planner value function when agents have recursive util-
ity functions. They show that the efficient allocation is also the solution of the
decentralized problem. FEl Karoui, Peng and Quenez (1997) provide a theoret-
ical treatment of backward stochastic differential equations (BSDE) for a finite
horizon with some applications to financial economics.

Some of the central issues of the first part of this paper are related to the work
by Epstein (1988) and Naik (1994). Epstein investigates the impact of preferences
on equilibrium asset prices in a modified Lucas (1978) economy where a unique
good can be produced by several different types of trees with i.i.d. output. Naik
examines the impacts of adjustment costs and changes in risks on aggregate stock
prices. Both authors identify the I.LE.S. as determining the direction of the effect
of changes in risks of the equilibrium asset price.

The second part of the paper complements the work by Dumas (1989) and
Wang (1996). Dumas considers the case of a dynamically complete economy
where two heterogenous investors trade a riskless bond and a risky security.
Agents differ by their CRRA. The author analyses the optimal portfolio and
consumption policies, the equilibrium interest rate and the dynamics of the equi-
librium wealth sharing rules. Wang derives a closed-form solution when one in-
vestor has a logarithmic utility function and the second investor has a square-root
utility function. Another related work on heterogenous agents and asset pricing
is the paper by Constantinides and Duffie (1996). They construct a model with
heterogenous consumers having common separable preferences but experiencing
non-insurable idiosyncratic shocks. They show the existence of an equilibrium
with no trade. They show how the Euler Equation must be modified to incorpo-
rate the presence of idiosyncratic shocks. In particular, a term, representing the
cross-sectional variance of the distribution of the individual consumer’s consump-
tion growth, needs to be added. The main result is that ignoring idiosyncratic
risks leads to an underestimation or overestimation of a security excess return.
In this paper, only a risky asset can be traded by N heterogenous investors and
we investigate how differences in preference characteristics affect the asset equi-
librium price and ownership distribution across time.

At an empirical level, allowing distinction between L.E.S. and risk aversion in
agents’ preferences can be useful to understand the limits implied by Expected
Utility Theory in fitting time-series behavior of consumption and asset returns.
Epstein and Zin (1991) using monthly U.S. data on consumption and returns from
1959-1986 obtain a value of LE.S. less than unity (corroborating Hall’s estimate,
1988). Nevertheless, they stipulate that the results are sensitive to the choice

! This concept was introduced by Geoffard (1996) in a deterministic framework.



of consumption measure. Kandel and Stambaugh (1991) show that risk aversion
plays an important role in accessing the means of both equity returns and interest
rate. On the other hand, the volatility of equity returns is determined primarily
by the LE.S., a low LE.S. implying a high volatility. Kocherlakota (1990) argues
that the real problem for an econometrician lies in disentangling I.E.S. and the
discount factor. He concludes that “the link between the CRRA and the LLE.S.
in the standard preferences is not the cause of their empirical failure”. A recent
paper by Schwartz and Torous (2000) argues that data used in some previous
studies that try to disentangle I.E.S. and risk aversion were inappropriate. Using
U.S. term structure data over the period 1964-1997, they find the LE.S. to be
equal to 0.226 over 1964-1997 (0.11 over 1979-1997 ), the CRRA coefficient to be
equal to 5.65 over 1964-1997 (8.83 over 1979-1997) and the discount factor to be
around 0.989 for both time periods.

1.2. Results

The main contribution of the paper is to clarify the effects of risk aversion and
LE.S. on equilibrium price. We consider a Lucas (1978) tree economy with iden-
tical trees (of measure one) whose output is correlated over time and assume a
constant average growth rate of dividends. In the representative agent case, we
are able to get a closed form solution which provides some new insights on the
role played by risk aversion and I.E.S. in the formation of the asset equilibrium
price. The equilibrium price reveals a two stage mechanism concerning the effects
of risk aversion and willingness to substitute consumption over time. First, the
agent adjusts downward the average growth rate of dividends with a (negative)
premium proportional to her degree of risk aversion and the magnitude of risk.
Then, the effect of this effective growth rate of dividends depends on the L.E.S.
Since there is no storage, if the agent’s willingness to substitute present consump-
tion with future consumption is high (low) enough, namely LE.S. greater (less)
than unity, an increase in the effective growth rate drives up (down) the price of
the tree. In the second stage, the agent looks at the sign of the effective growth
rate of dividends. If the latter is positive (negative), the higher LE.S., the greater
(lower) is the equilibrium price.

The extension to the heterogeneous agents case allows us to trace out the evo-
lution of the ownership distribution across time and its effects on the equilibrium
price. We find that agents can be ranked using a one-dimensional parameter 6,
depending on individuals’ discount rate for the future, I.LE.S. and risk aversion.
The agents, whose value of 8 is small, are the agents who either are very patient
(low discount rate for future) or combine a low risk aversion with a high will-



ingness to substitute consumption across time. The agent displaying the lowest
value for 0 sees her consumption and ownership rising with time and will ulti-
mately become the only capitalist in the economy. Wealth concentration leads to
an increase in the equilibrium price of the risky asset.

The paper is organized as follows. Section 2 describes the economic setting
and provides some insights on the role of the I.E.S. and risk aversion in the deter-
mination of the equilibrium price of an asset. Section 3 extends the analysis to
the heterogeneous agents economy and focuses on the wealth (ownership) distri-
bution among agents and its effects on the equilibrium price. Section 4 concludes.
Proofs of all results are collected in the appendix.

2. THE ECONOMIC SETTING

We consider an economy & la Lucas (1978). Time is continuous and the economy
is populated with a continuum of measure 1 of identical agents who live forever.
The main innovation of the paper lies in the introduction of a class of homothetic
recursive utility functions a la Kreps-Porteus (1978).

2.1. Information Structure

Uncertainty arises from the productive sector.

It is modeled by a probability space (€2, F, P) on which is defined a one di-
mensional Brownian Motion w. A state of nature w is an element of €. F
denotes the tribe of subsets of €2 that are events over which the probability mea-
sure P is assigned. The information structure is given by a standard filtration
F = {F, t € R;} satisfying the usual conditions (increasing, right-continuous,
augmented and with Fy being trivial. That is 7} is the o-algebra generated by
{w(s);0 < s < 1)} and augmented. At time ¢, the information set is F: individu-
als can learn the true state of nature by observing the sample path (realization) of
w over time. The filtration [F represents how information is revealed over time. All
the processes considered in the paper are progressively measurable with respect
to I and all identities involving random variables (stochastic processes) should
be understood to hold P — a.s. ((A x P) — a.e., where \ denotes the Lebesgue
measure on Ry ).

Note that in this economy markets are not (dynamically) complete since there
is one source of uncertainty and only one stock can be traded.



2.2. Preferences

Preferences are represented by a stochastic differential utility characterized by a
pair of primitives (f, A) called the (un)normalized aggregator. The representative
agent maximizes her lifetime utility

v =8 ([ (£ v+ FAVE) @) as) 1)

where ¢ is a consumption process, Iy denotes the conditional expectation given
F: and oy is a progressively measurable square integrable process. Equivalent to
(2.1), given a consumption process ¢, the utility process V' satisfies the stochastic
differential equation

W (0= = (JEO.V0) + AVO) o OIF ) e+ ov ). 22

The attitude to risk is encapsulated in the function A and broadly speaking,
“the more negative is A, the more risk averse is the agent.” We use stochastic
differential utility a la Kreps-Porteus (1978). The aggregator is given by

o) =28 gy = 2—1

p vel v

with 3 > 0,0 =# p <1 and 0 # o < 1. The discount rate of future is 3, the
intertemporal elasticity of substitution is s = ﬁ, and risk aversion is captured
by a. For instance, when o = 1, the agent is risk neutral. When a = p, we are
in the standard framework of Expected Utility and the coefficient of relative risk

aversion is 1 — a. These preferences are time consistent and the individual is not
1

indifferent to the timing of resolution of uncertainty. In particular, if s > 1,

the agent prefers early resolution and if s < ﬁ, late resolution.

As shown in Duffie and Epstein (1992b), this program is equivalent to max-
imizing a program using a normalized aggregator (f, A) such that A = 0. The
corresponding normalized aggregator is:

The existence and uniqueness of the objective function V for a given (well be-
haved) consumption process is shown in Duffie and Lions (1992) using PDE tech-
niques. They prove that under exponential growth conditions for the consumption



process, the lifetime utility process V' defined by equation (2.2) satisfies a PDE
which has a unique solution.

We slightly modify the Duffie-Epstein (1992) formulation of SDU in order to
get existence of the consumer maximization problem in an infinite horizon with
growing consumption plans.

Define a modified utility function W by

W) =V(t)e

where ~ is an arbitrarily large positive number. Notice that maximizing V is
equivalent to maximizing W. Given equation (2.2), the function W satisfies

AW (t) = — (e " f(c(t), "W (t))dt + W (1)) dt + oy (t)e” " dw(t).

— £
If f(e,v) = g%, then we have the representation

P (@)
(B e B e s
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The terms e 7 plays the role of a discount factor and will assure convergence of

W(t) = E,

the integral even when the consumption process grows on average at a positive
rate. One can also notice that this formulation is equivalent to redefining the

~ _Xe
aggregator using the function by f(c,v,t) = %(e)a—ﬁtfi — (a% — 7).
QU)o

2.3. Technology

There is a continuum of measure 1 of identical trees. Output of each tree y is
perishable and follows a geometric Brownian Motion

dy(t) = y(t) (udt + odw(t))

where dw(t) is the increment of a standard Wierner process, p represents the
average growth rate of output and o captures the magnitude of the uncertainty.’

Assumption
In order to have existence of the SDU, we need to assume some growth re-
strictions on the output process. In particular we impose the condition G +

p(—u+(1—a)§) > 0.

In a discrete time framework, an equivalent formulation is y, 1 = (1+p)ye +yeoeit1, where
€441 1s 1.1.d. and normally distributed.



2.4. Representative Agent Problem

Taking the price of a tree p as given, the agent decides how many units of stock
z to hold and how much to consume ¢ in order to maximize her lifetime utility.
Since there is only one asset in the economy, the agent’s program can be written

max Wi
s.t. dz(s) = ﬁ [z(s)y(s)ds — c(s)ds], z(t) > 0 given
dls) = (o) (uds + odus)

Transversality Condition: Following Duffie, Epstein and Skiadas (1992
Appendix C), the tranversality condition for this problem can be written

lim e Y*E [W;] = 0 for some suitable v > 0.

t—o0

We now move to the equilibrium properties.

2.5. Equilibrium Analysis

We already mentioned existence and uniqueness of the equilibrium, characterized
by the condition ¢ = y or equivalently, z = 1. Moreover, we have the following
proposition.

[0

Proposition 1. The equilibrium value function J is given by J(y,t) = Ke "'y
where K is a positive constant independent of v but that depends on all the other
parameters of the model.

Proof. See appendix 1. B
It is easy to check that the transversality condition is met for some v > 0
large enough.

Proposition 2. The equilibrium price of tree p is a linear function of the current
dividend y and is given by

ply) = Y (2.3)

Proof. See appendix 2.
We use a utility gradient approach to compute the equilibrium price?.

3For more details on this approach, see Duffie and Skiadas (1994) and Shroder and Skiadas
(1999).



Remark 1. For the standard FExpected Utility framework, the above result spe-

cializes to
Y

ply) =

Recall that in this case the coefficient of risk aversion is 1 — a and the elasticity
1

of substitution is Sl

The above relationship provides several insights about the dependence of the
equilibrium price on the fundamentals of the economy.

When the agent elasticity of substitution is equal to 1, which corresponds
to the case of logarithmic felicity function, the agent is myopic and does not
care about the future. Thus the equilibrium price is independent of the average
growth rate of dividends p, the relative risk aversion measure a and magnitude
of uncertainty o.

Disentangling the effects of risk aversion and LE.S., relationship (2.3) shows
the following. The agent’s attitude with respect to uncertainty is to adjust down-
ward the average growth rate of dividends p by a factor (172&) o? increasing with
the degree of risk (1 — «) aversion and the magnitude of risk o, so that the effec-

tive growth rate is g = u — KPTOQUQ. Now, recall that there is no storage in this
economy. When the LE.S. s is greater than 1, the agent is willing to substitute
present consumption for future consumption. To do so, she wants to increase
her purchase of securities driving prices up as g goes up. On the contrary, when
s < 1, she prefers smooth consumption plans. The equilibrium price decreases
as ¢ rises as she sells the asset in order to increase current consumption. The
effects of the magnitude of the I.E.S. depend on the sign of the effective growth
rate of dividends. If g is positive, increasing s drives the equilibrium price up:
the agent wants to buy the asset which has a positive growth rate of dividends,
taking into account risk. This pushes the price up. The opposite applies if g is
negative. Campbell and Viciera (1998) present a partial equilibrium model in
which an Epstein-Zin recursive utility representative agent trades a riskless asset
and a risky asset having time dependent expected return. They use an analytical
approximation for solving the Euler equation and calibrate the model to postwar
US stock market data. They show that the I.E.S. only indirectly affects portfolio
choice through its effects on the average level of consumption relative to wealth.
Their calibration results show that this indirect effect is small. They conclude
that the main parameter in determining portfolio choice is the coefficient of risk
aversion. Regarding empirical estimations of the LE.S., Hall (1988) concludes
from his empirical analysis that the I.LE.S. is “likely not to be above 0.2 and may



well be zero”. FEpstein and Zin (1991), Schwartz and Torous (2000) also find
a small but positive LLE.S. It could be interesting to have an estimation of the
adjusted dividend growth rate or at least its sign in order to identify the effect of
the L.LE.S. on the asset equilibrium price.

We now introduce heterogeneity in the economy, allowing agents to differ in
their willingness to substitute consumption over time, attitude towards risk and
degree of impatience.

3. Heterogeneous Agents

In this section, we extend the analysis to the case of an economy populated
with N heterogeneous agents. As before, agent ¢ preferences are represented by
a stochastic differential utility characterized by a normalized aggregator (f;,0)
with

Pi e
j— - C.T — v 1
filei,vi) = —f% :
Pi (aw;)=

The triplet (3;, s, @;), describing agent i discount rate for the future 3;, her
L.LE.S. s;, and her attitude towards risk «;, encapsulates the heterogeneity among

agents. We define
i— 1 1—ay
o= 2t (- L) (3.)
85

2

and we assume that we can rank the agents in such a way that
0< b <0y <...<bp.

As the parameter 6; turns out to be a sufficient statistics for encapsulating agents
heterogeneity, it plays a crucial role for our analysis.

As already pointed out in the previous section, we need to be careful regarding
the existence of the value function when dealing with an infinite horizon and
growing consumption plans. To be precise, we should modify the individual value
function in the same way as before. However, to keep the exposure simple, we
will use stochastic differential utilities as presented in Duffie and Epstein (1992).
We now set up the program for agent .

3.1. Individual Program

Aggregate consumption is exogenously given. The state variables for the indi-
vidual problem are the current level of dividend y and the wealth (ownership)
distribution Z = (21, 29,...,2n5). Agents can trade their shares and can also

10



sell/buy consumption among each other in exchange for the promise of some
future consumption.

Notice that we do not have idiosyncratic shocks in our framework. Hence,
uncertainty will affect individual’s in a uniform fashion but the magnitude of
the effect depends on preference characteristics of each agent. The issue of asset
pricing in presence of insurable idiosyncratic risks is tackled in Constantinides
and Dulfffie (1996).

Given a pair (y, Z) > 0 at time ¢, agent ¢ maximizes her lifetime utility

max Vi(y, Z) = E /OO ECZ’L<8) — (a;Vi(y(s), Zﬁ(jf)i)ai "
; CoP (aaVily(s), Z())
s.t. dzg(s) = [2k(s)y(s) — ck(s)]ds, k=1,2,..,N (Pi)

dy(s)

)
— y(s) (uds + odu(s))

In addition, we required the following Transversality Condition

lim e "B [V;(y(t), Z(t))] = 0 for some suitable v; > 0.

t—o00

We now define an equilibrium for this economy and investigate its properties.
3.2. Equilibrium Analysis
An equilibrium for this economy consists of

1. N couples of functions (¢;, z;) that are solutions of agent ¢'s problem (Pi)
2. A price function p

3. Market clearing conditions: The allocations {(c;, zl)}f; | must satisfy

y (goods market)

S
I

i
I

1 (financial market)

] =

Z; =
1

o
I

Remark 2. Since there is only one asset available in the economy, the non-
Ponzi game (or Transversality) condition implies that any agent will have a long
position in the asset. To see this, assume that at some date T > 0,, agent ¢ has

11



a short position, z;(t) < 0. Because the marginal utility goes to infinity when
consumption goes to zero, agent ¢ always chooses to consume a positive amount,
¢; > 0. If (1) < 0, then form agent i budget constraint, it is easy to see that
z; (1) < 0. This implies that agent ¢ holdings decrease after 7. This violates the
non Ponzi game condition.*  We conclude that z;(t) > 0, for all date t and for
1=1,..,N.

The following proposition specifies the structure of an equilibrium.

Proposition 3. There exists an equilibrium where given some initial conditions
(y, Z) , agent i’s equilibrium value function V;*(y, Z) = ¥, (%) y*, the equilibrium
price p(y, Z) = P(Z)y, the optimal consumption c}(y, Z) = C;(Z)y, the optimal
portfolio rule z; is a deterministic function of time and ((¥;,C;), P) are also
deterministic functions of time fori=1,2,..., N.

Proof. See appendix 3. l

Since there are no idiosyncratic shocks, uncertainty affects agents in a similar
fashion, i.e., a positive shock is beneficial for every agent. Though, the magnitude
of the effect depends on each agent own characteristics. The issue of the effect
of idiosyncratic risks affect is addressed by Constantinides and Duffie (1996). In
the sequel, we focus on the properties of the equilibrium described in the above
proposition. We now characterize the dynamics of the equilibrium.

Proposition 4. At timet, fori =1,2,..., N, writing agent i’s equilibrium value
function V*(y(t), Z(t)) = J; (t) y(t)*, the equilibrium allocation c(y(t), Z(t)) =
hi(t)y(t) and the equilibrium price p(y(t), Z(t)) = P(t)y(t), agent i’s program
(Pi) collapses to maximizing the usual separable utility

() = [ Bla) TR e e 0as
t
1

s.t. dzi(s) = P0) [2i(8) — hi(s)] ds

where ®; = Jipi/ai.
Corollary 1. Defining the pseudo riskless interest rate r for a unit dividend tree

L Pl
P

*As we will see below, tlim z;(t)=0fori=2,..., N and tlim hi(t) =1.

12



the optimal condition for agent 7 is

where b; = 1 — p;. Moreover, the transversality condition is
lim Zi<t)/\i<t) =0
t—o00

where \; is the costate variable associated to z;.

Proof. See appendix 4. B

Using the market clearing condition and the optimal conditions for each agent
program, the pseudo riskless interest rate  can be expressed as a weighted average
(taking consumption levels as weights) of the 6;, so

by
by, Ok

M=

k=1

r =
hy
b

M=

k=1

3.3. Equilibrium Properties

In this paragraph, we conduct our analysis controlling for the level of output
1. Broadly speaking, this is equivalent to shutting down the uncertainty and
normalizing the output level to 1.

Some interesting properties of the equilibrium depends on the level of con-
sumption hy of agent 1. In particular, when Ay reaches a sufficiently high level,
all other agents decrease their level of consumption and asset holding and the
equilibrium price increases. The dynamics of the model depend in particular of
the initial ownership distribution Zy. If Zy is such that agent 1 owns a very small
number of shares and agent N is the main shareholder in the economy, it will
take some time for the economy to reach the state in which agent 1 is the only
agent accumulating shares and all the other agents are decreasing their holdings.

The dynamics of consumption and ownership are governed by the level of
the pseudo risk-free interest rate r. The following proposition characterizes these
results.

Proposition 5. Given any initial condition (y, Z), we have 61 < r < 0y and
there exists a finite date T' such that for all t > T, r(t) < 0y and for t < T (unless

13



T = 0) and r(t) > 02. This date is characterized by a sufficiently high level of
consumption hy for agent 1, more specifically

i Mk 0, — 05) < (05 — 01)™2 (3.3)

k=3

=
<
[l

From the relationship (3.2), agent i increases consumption as long as r remains
greater than 0;. Moreover after date I’, agent 1 remains the only agent who
accumulates shares and increases consumption.

Proof. See appendix 5. l

Remark 3. Recall that we have hy < z1 and zy < hy. Condition (3.3) cannot
be satisfied if agent 1 does not hold enough shares of the trees. Moreover, if
the initial condition is such that agent N owns a lot of shares, it is possible to
have r > Oxn_1.° This implies that all individuals but agent N increase their
consumption level at least for a while.

We now present some interesting properties of the equilibrium price, con-
sumption allocations and ownership. All the proofs are provided in appendix

5.

Equilibrium Price
For all £ > 0, we have

i<P(t)<0—1
and for t > T,

P()>0

5 < P() <4

Jim P(1) = 50

The price is always higher than the value which would prevail if agent N were
alone in the economy. Wealth concentration by agent 1 leads to a rise in the
equilibrium price until the level which would prevail if agent 1 were alone in the
economy. This should not come as a surprise. Agents with high 8 prefer early
consumption. To achieve this, they are willing to sell some of their shares of the
trees to agents preferring late consumption. Hence, initially, the asset equilibrium
price is “relatively” low. As time passes, since there is a fixed amount of shares,

N-2
> GN’;"C’G’“' , then indeed we have r(0) > 6n_1.
k=1

5 . .
More specically, if zyo > IRy

14



agent 1 has accumulated shares and there are fewer shares available on the market.
This drives the equilibrium price up.

Consumption
For ¢ > 0, we have

hi (t) > 0and lim 7y(t) =1
hy (1) < 0
Fort>T,

h; (t) <0 and Jim hi(t)=0fori=2,..,N

Portfolio Shares
For all £ > 0, we have

Z1 (t) > 0and tlirglo z1(t) =1
zv (t) < 0
and for ¢t > T,
z; (t) <0 and Jim z(t)=0fori=2,...,N.

Agent 1 increases her ownership until (asymptotically) she is the only capitalist
in the economy.

Borrowers and Lenders
For all £ > 0, agent 1 is always a lender and agent NN is always a borrower,

21<t) > h1<t)
ZN<t) < hN<t)

and for ¢ > T, agents 2, ..., N — 1 become borrowers

2 (t) > hl<t)

We now examine the preference characteristics determine which agent ulti-
mately accumulates all the wealth in economy.

15



3.4. Preference Characteristics and Wealth Accumulation

In this paragraph, we ask the question: Why do some agents accumulate wealth
and other do not? This leads us to analyze the dependence of 8; on §;, s; and
a;. Recall that the agent having the lowest value for € will ultimately own all the
shares.

3.4.1. Effect of the Discount Factor

From relationship (3.1), we have g—g? = 1. Agent 7 can display a low value for 6;

because she values future a lot (high patience or low ;).

3.4.2. Effect of 1.E.S

From relationship (3.1), we have g—g@ = —S% <u — @02) If agent #’s effective

growth rate g; = p — L%ZO'Q is positive, then she can display a low value for 0;
because she is willing to substitute consumption over time. Note that in order
to have a positive effective growth rate, the agent must have a sufficiently low
aversion towards risk.

3.4.3. Effects of risk aversion

First of all, recall that when « increases, risk aversion decreases. Once again,

using relationship (3.1), we have % = —%;—1% If agent ¢ is willing to substitute
consumption over time enough (s; > 1), she can display a low value for 6; if she

has a low risk aversion.

As a summary, we can claim that individuals who either highly value the
future or who are both willing to substitute consumption over time and display
low risk aversion will accumulate wealth.

16



4. CONCLUSION

An Expected Utility framework is unable to disentangle the effects and therefore
the relative importance of risk aversion and intertemporal elasticity of substitu-
tion. For an environment & la Lucas (1978), i.e., an endowment economy with
(in this case) a single perishable good, this paper illustrates the importance of
the LLE.S. on the equilibrium price. Risk aversion only plays a role in accessing a
corrected average growth rate of dividends that incorporates uncertainty. Intro-
ducing heterogeneity among agents highlights the role played by time preference,
risk aversion and L.E.S. in wealth accumulation and its effects on the asset equi-
librium price. The two-person problem is a special case of our analysis. In the
context of three agents or more, as Dumas (1989) points out, the equilibrium
behavior can be different from the two-investor situation. In our framework, we
find that the asymptotic behavior of the N-person problem coincides with the
two-person problem as far as the wealth sharing rules are concerned. The main
result is that patience, willingness to substitute consumption over time combined
with a low aversion towards risk contribute to wealth accumulation.

In our setting, uncertainty affects agents in a uniform fashion in some sense
since we do not allow for idiosyncratic shocks. A natural extension will be to allow
labor or income shocks when individual preferences are represented by stochastic
differential utility. In addition, because agents cannot store wealth (fruits are
perishable) it would be interesting to introduce a riskless asset (storage technol-
ogy) to improve consumption smoothing and risk hedging. This will allow us to
address issues related to the equity premium. This is left for future research.

17



5. APPENDIX

5.1. APPENDIX 1

Proof of Proposition 1.
Proof. At the equilibrium, ¢(t) = y(¢) and we know that there is a unique
function J such that

K600 = B ([ (F.7 00100 5) )
s.t. dy(s) = y(s)[uds + odw(s)]

Let us verify that for all ¢, J(y(t),t) = Ke "y(t)* for some constant K to be
determined. Plugging back J into the conditional expectation yields

Ke () = B, ( I (9 LT v)KeWy(s)o‘> ds)

P (aKe75y(s)®) P

which leads to the condition

Ke y(t)* = < /t T y(s)e s <£<QK)1§ _@l - 7)K> ds> .
It follows

e My(t)* = <%<OAK)§ — (aé — fy)> </ By (y(s)%e %) ds> .
P P t
Note that for v large enough, the quantity [ E; (y(s)*e~7*) is indeed finite and

—yt a
€ WM This leads to the condition
yapta(l—a) %

_L2
(Fem t-@f-)
5 = or equivalently
Y —aptoa(l —a)%

equal to

2
’y—l—a(—u—l—(l—a)%) = %(QK)'E —a%—l—’y

The terms in v of the LHS and RHS cancel out each other and we finally obtain

=ﬁ+p<—u+(1—a)%2>

We can readily conclude that there exists a unique constant K independent of
and positive given the assumption made on the parameters of the model. Il
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5.2. APPENDIX 2

Proof of Proposition 2.
Proof. Following Duffie and Epstein (1992), define the (equilibrium) state price
density 7w by

(1) = exp ( | Rws).7 w9.5).5) ds> Fi ((8), 7 (), 1) 1)

then the equilibrium price at date ¢ is given by

ply(t)) = %E ( / " ﬂ<s)dp<s)>

where D(s) is the cumulative dividend up to time s. In our case, we have assumed
the cumulative dividend to be absolutely continuous and more precisely, dD(s) =
y(s)ds. Fasy computations lead to

fi(ev,t) = BeP L av)mae Wl

]‘3(6,11,75) = g(a — p)cp<av)*§e*laet _ (a_pﬁ _ ’Y)
Since J(y,t) = Ke 792, it follows that

fl<y7 J(y7 t)7 t) = ﬁ(aK)lffyafle*W

fs _ B _e af

f2<y7‘]<y7t)7t) = ;(Oé—p)(aK) o _(7_7)

Using the expression obtained for K in appendix 1, after some straightforward
manipulations, we obtain

foly, J(y, 1), 1) = —a <u + @cﬁ) - <ﬁ +p <—u + @cﬁ)) +7

To compute the equilibrium price, it is worth noting that TQ is a constant, so by

the definition of the state price density w, we have the following relationship
() _ (ys(8)™ !
7(0) yo!

Now define a new process X such that X(s) = e(f?*”’)sy(s)o‘. Using Ito’s lemma,
we obtain

dX(s) = X(s) <(f; —v4au+ @UQ)CLG + aadw(s)>
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Taking expectation on both sides yields

AE (X)) = (o—+ap+ 222y m (x(5)) ds
= (5 ot S5 ) o (o) s
Since X (0) = y“, we obtain that

EO (X(S)) — yae* <B+P(*M+£1;a202)> S

Of course, the previous quantity is independent of ~. Thus, the equilibrium price
at date 0 is given by

py) = — /0°°E0<X<s>>ds

yafl

ﬁ-%p<—u4-g%ﬁaﬂ

1
1-p

or equivalently p = % we obtain the desired result. B

Since s =

5.3. APPENDIX 3

Proof of Proposition 3.

Proof. Given a wealth distribution Z = (z,, 2,, ..., z,,) and a level of dividend y,
denoting V;*(y, Z) the equilibrium value function for agent i, the HBJ equation
associated with agent ¢ program is

F

Bi gt — (Vi (y, Z))

0 = max — -
Liq

TP (Vi (y, Z))
l@Vi*(y,Z) [z-y—c-] _I_Zla‘/i*(yvz)

0z e . Oz [zry — ]
The first order condition is:
(™t 10V, 2)

ﬁi i
(Vi Z)e P 9%
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Plugging back in to the HBJ, we obtain

1

. i 1\ pi-1 . P
L= p; [ (asVi(y, 2))™ <13V¢ (.%Z))Pil N

0 —
£ B; p 0z;
19V (y, Z) 19V (y, Z)
i SN2 R AV VAT CTIR A e B A Rl —
v oz 2y — Vit (y, Z) + ; » oz [2ry — cx
a‘/z*<y7 Z) 02 282‘/;*<y7 Z)
tHY Ay + 2 Y oy?

We now need to check that indeed V*(y, Z) = U,(2)y*, ci(y, %) = Ci(2)y,

p(y, Z) = P(Z)y, Z deterministic, and can be an equilibrium.
Plugging back V;*(y, Z) = ¥,(Z)y* into the HBJ equation yields

0 — 1—p; <<Oél‘\IJZ‘<Z))ypiOéi>pi#l < 1 a\I/Z(Z)yai)Zp'Ll
P Bi P(Z)y 0z

L O0(2)
— Y ;s — ;U () y™
Y@y oe Y ATy
Y L 0V(y, Z) e
oy —Cu(Z 0 (2% + —ay _

The expression is homogenous of degree «; in y. This leads to

1o, <<ai\m<z>>> < ! a%<z>>%

0 -
£; B P<Z) 0z
1 0wi(2)
TP 0m zi — ai¥i(7)

" ; A )]+ aunwi(2) + Tanlon - DW(2)

D)W (Z)y™

Indeed, assume U; satisfies an ODE. Writing U,(Z(¢)) = J;(¢) for all ¢, we show
in appendix 4 that J; satisfies a Bernoulli ODE type and the problem becomes
equivalent to solving a usual (deterministic) program when agents have CRRA
utility functions for a Lucas tree economy. Therefore, there is a unique solution

to the ODE satisfied by ;.
Moreover from the FOC, we obtain
1 3\IJZ<Z)

Pt = (W)Y ) Sy
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(a; V(%))

oW;(Z)
32,‘

yﬂi*1

It is then easy to see that the optimal consumption can be written

¢y, %)

From the budget constraint of agent ¢ we obtain

dz;(t)

1
p(t)

Hence

[2:(D)y(t) —

t
<2i0 —/ €
0

*
(2

s

J3 #5 CilZ(s))ds
(

(1)) dt

).

P(s)

So indeed, the assumption Z is a deterministic function of time is compatible
with the expression of z; for i = 1,2, ..., N.

The last thing we need to check is that we can indeed write V*(y, Z)

U;(Z)y“. From the expression of the equilibrium value function we get

=

% Ey

(Ci(Z(s))y(5))"

(y, Z)

7

I

Pi

N

J

e

Pi

[

=

5

/o Uy (Z(s

(2"

Pi

The desired result follows: indeed,

V.

7

*

a; Vi (Z(s))) =i

Pi_
(o3

\IJZ<Z<S))> Eo [y(s)*] ds since Z(s) is deterministic

1 ai\l’i(z(s))> eiln 5405 g

y, Z) can be written ¥;(Z)y*. W
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5.4. APPENDIX 4

Proof of Proposition 4 and Corollary 1.

Proof. Since 7 is a deterministic function of time, setting y = y(¢), we can
rewrite the equilibrium value function of agent i, V;*(y, Z(t)) = ¥,;(Z(¢))y™ =
Ji(t)y® and cf(y, Z(t)) = Ciy(Z(t))y = hi(t)y where J; and h; are deterministic
functions of time. Hence

/w@ ( (us)y()" _aiji<s)y<s)ai> ds]

Pi \ (aidi(s))y(s)o) !

OT (ﬂ% - az-Jz-<s>> B ly(s)™] ds

7i \(asi(s)

Liy* = F

This leads to

Ji(t)e%t = /OO Bi (—hi(s)p;_l - OéiJi<8)> %5 s
t

Pi \ (i Ji(s)) =

where a; = a; (1 — (1 — ai)é).
Differentiating with respect to ¢ yields

Jiy = B O <O‘Zﬂi _ ai> Ji(t)

Pi_
P

Pi (v Jy(t)) i

J; satisfies a Bernoulli’s type ODE. Define ®; = Jipi/ai. It is easy to verify that
®; satisfies the following linear ODE

i () = —B;(0) ™ hi(t)P + 0,0 (t)

This exactly means that our problem is equivalent to the one where agent 2
maximizes the usual separable utility

6 = [ oa) ER (e e
st. dz(s) %[%(s) ~ hi(s)] ds

The Hamiltonian of this program is

Li o A
Hi(hi, N, 23, t) = B;(az) @ hte %3 4 FZ [2; — D]
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The optimal conditions are

= 0
Oh;
- oH;
A = 0
i + o7,

or equivalently

Li 51 g, Ad
pifilau) i h e M = 5
A,-+FZ = 0

Define the pseudo riskless interest rate for a unit dividend

L Pl
P

and the optimal condition for agent ¢ is

hi — (5.1)

where b; = 1 — p;. Moreover, the transversality condition is

t—o0
From the optimal condition (5.1) for any couple (i, j) we have

hi by
bh— — bjh—; =0; —0; (5.2)
Lemma 1. tlim hi(t) = 1, tlim hi(t) =0, i = 2,..,N, tlim P(t) = A~ and

Ai(t) o Kie %t K; > 0.
Proof. Integrating relationship (5.2) for agent 1 and agent j # 1, we obtain
ha(t)

hi(t
b1 In—= — bj lnﬁ = <QJ — 01)75 (53)
hio hjo
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The RHS of the equality goes to 400 when ¢ goes to +00. Since hy () and h;(t) are
between 0 and 1, it must be the case that tlim hi(t) =0, i = 2, ..., N. Moreover,

N
since Y hy = 1, we obtain tlim hi(t) = 1. Moreover, from (5.3), we have
k=1 — 00

b

h1<t)>% *Mt
€

Since lim hq(t) = 1, this implies that

t—o00
_(05-91)

hj(f) 4:;/0 Aje b Aj >0,7=2,...,N.

N
From ) hy =1, we deduce that

k=1
G
h1<t) ~ 1—A,e e
“+o00
with n =arg min M.
2<5<N 7

From the FOC, we obtain )]‘;((tt)) 2 Bie %1t B; > 0. In addition, it is easy to

P(?)
we obtain \;(t) I B; A. This leads to a contradiction since we have tlim h(t) =1
and we must have also tlim hi(t)A1(t) = 0. Thus, A = 0, tlim P(t) = % and
/\Z<t) +N I(iei(’ﬂ'lt7 K, >0. 1

see that 2O+ I 01. This implies P(%) I % + Ae%1t. Now assume that A # 0,

h1>0 and hy< 0
Proof. Since the marginal utility is infinite at 0, an agent always chooses to
consume a positive amount so h; > 0. Differentiating with respect to time the

N N . .
equilibrium condition Y~ hy = 1, we obtain )  hy= 0. Moreover, h;= WZ? ‘
k=1 k=1 ¢

N N
and thus, <Z Z—:) r = <Z Z—:0k> . Since 01 < 0 < Oy 1t is easy to see that
k=1 k=1

01 <r < 0y, and consequently, ﬁl> 0 and h].v <0. 1

hi1 < ziand hy > zy
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Proof. From agent ¢ budget equation dz(t) = % [2i(t) — hi(t)] dt and the
relationship i = —%, we have
d(z(Ni(1)) =A; (D h(t)

Integrating between dates ¢ and s (¢ < s), we obtain

25(5)Mi(5) — H(ON(E) = /t " s () h(u)du

By the TVC, we have lim z;(s)\;(s) = 0. Moreover, since lim \;(s) = 0, this
§—00

§— 00

implies that lim A;(s)h;(s) = 0 and it follows
§— 00

(ha(t) — 25(1)) Mi(t) = — / s () ha(u0)
t
We can conclude that for all ¢

hi(t) < z(t) since hy (t) >0
hn(t) > zn(t) since by (£) <O M

5.5. APPENDIX 5

Proof of Proposition 5
Proof. Recall that

N heg

- kzzjl b (5.4)
N '
kz::1 ok

Therefore since 67 < 0y < Oy, we have 01 < r < Oy. Moreover, we have
seen that tlim hi(t) = 1 and tlim hi(t) = 0, ¢ = 2,..., N. This implies that

tlim r(t) = 01 < 0Oy. Therefore, for ¢t large enough, we must have r(t) < 6.
Unless 7(0) < 0y, choose T :rtn>i£1 {r(T') = 03 and  (T') < 0}. We want to show

=

that for all t > T', r(t) < 0.

K2

Lemma 2. If h; >0, > h; =1, h;=20,, hi> 0 and 1;< 0,2 =2,..., N, then
i=1 =1

r< 0.
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with respect to time yields

) (5)

Proof. Totally differentiating relationship (5.4

N ouh N h
Ophy }: hp \
b b
k=1 k=1

Y Y
M=z Z.
D>

i) = -
N . .
> (05 —0y) <%‘%‘%‘%‘>
1<i<j<N 7 b
= e
X e y hihg _ hihi
where D = kzl pe. Set W = 1<‘;<N<0j —0;) b5 5oy ) |- We want to
- RXAYES
show that
max ¥
s.t. h, 2 0
N N
i=1 i=1

hiy > Oand h<0,i=2,.. N.

is equal to zero. Note that the constraints imposed on ¥ are less stringent
than the ones for the desired lemma. We examine the possible values of the

<ﬁi, hi> in order to reach the maximum value for W.

Notice that 1 <7 < 7 < N, (0; — 01)%]1 < 0, set hy = 0 unless each term
0, — 01)%]1 is zero for j = 2, ..., N. The latter implies i;= 0 and in this case,
W = 0. If all the ﬁj are not equal to zero, we must choose 2; = 0. By the same logic
since —(0; — 01)%]1 < 0, we must choose ﬁlz 0. Using a similar argument looking
at the possible values for hy and hé in order to maximize ¥, once again we obtain

that ho = 0 and héz 0. Then, we progressively eliminate each couple <hz, h,-) for

7 = 3,..., N and we finally obtain that max ¥ = 0 exactly when <hz, h,-) = (0,0)
for all « = 1,..., N. Note that at the equilibrium, h; > 0 for ¢ = 1,2,..., N and

ﬁl> 0, so it must be the case that VU is negative which implies 7 (t) < 0 as soon

as r(t) < 0y. Note that r(t) < 0y if and only if Z —&QR 0o Z %% which implies

>

k=3

(0p — 02) < (03— 01)— M

=
w|§
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Lemma 3. For all date t > T, r(t) < 0s.

Proof. For all § > 0 small enough (T + 8) < 09, so hs (T+6)<0,i=2,...,N
and therefore 7 (T4 8) < 0. Now assume that there exists a date s > T such
that 7 (s) =0 and 7 (¢) < 0 on [T, s). Since we must have r(s) < 0y, this implies
h; (s) < 0 for i = 2,...,N, and consequently 7 (s) < 0 which is a contradiction.
Henceforth, r(t) < 0 for all ¢ > 7. 1

Finally from lemma 1. and lemma 2., we conclude that for ¢ > T', r(t) < 0.
The proof is complete W

Equilibrium Price Properties
From lemma 2. and lemma 3., for all ¢ > T, 7 () < 0. Using relationship
(3.2), we have

B
h—l is strictly decreasing for ¢ >T,1=1,2,...,N.

(3

Recall that

> h;bi (5)e %=1 ds
Py = At
hi 7 (t)

. < (hi(u+t) —(it) 1 hs h; —0;u
P(t)= —bi/o <—hi(t) > —hi(t)hi(u+t) (h—l(t%-u) - h_z<t)> e "du

It follows that for ¢ > T, P (t) > 0, so P is increasing.
Moreover, for ¢t > T,

/ (1) 2Py < P(t) < / (1) e Oty
0 0

Equilibrium Consumption Properties
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We have already seen in appendix 4 that tlim hi(t) =1, hi> 0, hy> 0 and
tlim hi(t) = 0 for i = 2,..., N. In addition, for ¢ > T, r(t) < 6. Thus for

i=2,3,..,N—1, we have h; (t) <0 fort >T.

Portfolio Shares and Borrowers and Lenders
We have already seen in appendix 4 that hy < 21, hy > zy and for all
1=1,2,.., N

(ha(t) — 2(£)) Mi(t) = — /t s ()Ae(a)du (5.5)

Moreover, for t > T, h; () < 0. Therefore, for t > T, hi(t) > z(t). Finally

from agent #’s budget constraint dz;(t) = % [z:(t) — hi(t)] dt, we conclude that

21> 0, zy< 0 since , hy > zy and for ¢t > T, z; (t) < 0 since h;(t) > 2z(t).

Finally, since for i = 2,3,..., N we have h;(t) e Aief_ezb_ie]_)t, it follows that
@i,

h; (t) ~ —A4A; 0i61) =% ", Moreover, \;(t) ~ K;e 1t From relationship
+oo bi +oo

(5.5), we obtain

_Z_]_(G»;@ )+91 u
i du so

(alt) = 5(D) M(D) 2 Ak [ |
O 4,0 e,
Aie i — Zz<t) +r\c:oi We i with F; > 0

It follows
_ia), .
zi(t) o Fe % 7 with F; >0,¢1=2,3,...,N.
N
This implies tlim zi(t) =0 for i =2,3,..., N and since ) z; =1, tlim z1(t) = 1.
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