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Abstract

This paper analyzes the role played by the outside options

in negotiations when there is incomplete information about their

existence. We examine a War of Attrition where players enjoy

private information about their possibility of leaving the negoti-

ation to take an outside option. The main message that emerges

from the analysis of this game is that uncertainty about the pos-

sibility that the opponent opts out improves efficiency, since it

increases the equilibrium probability of concession. More pre-

cisely, if the probability that the opponent is strong is relatively

high, in equilibrium, the negotiation eventually ends with a sure

concession. On the other extreme, if the likelihood of a weak op-

ponent is high, strong types will eventually leave the negotiation

and opt out with probability 1 leaving weak types to play from

that time on the inefficient symmetric equilibrium of the classical

War of Attrition. Even in this case, the probability of concession

along the uncertainty phase of the equilibrium play increases.

Keywords: war of attrition, outside options.
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1 Introduction

This aim of this paper is to study the role played by the outside options

in negotiations when there is incomplete information about their exis-

tence. For this purpose we focus our analysis on the War of Attrition

since this is the simplest model of conflict that yields inefficient equilibria

under complete information. It is well known that, in a symmetric War

of Attrition without outside options, the unique symmetric equilibrium

consists in players randomizing at a constant probability between con-

ceding and not conceding, a very inefficient outcome indeed. We show

that the presence of uncertain outside options improves efficiency.

The relevance of outside opportunities available to the players on the

outcome of a negotiation has been well established in models of bargain-

ing with complete information (Shaked and Sutton (1984), Binmore et

al.(1986), Shaked (1987), and Ponsati and Sakovics (1998)). In these

models the decision of a bargainer to take up her outside option is a

strategic decision and outcomes depend crucially on who has this possi-

bility and when. If it is the responder who has the outside opportunity,

then, in the unique subgame perfect equilibrium, this player obtains a

payoff equal to the value of her option if this is larger than her equilib-

rium share in the game without the possibility to opt out. Otherwise,

the option has no effect on the outcome ( this is known as Outside Op-

tion Principle, see Shaked and Sutton (1984)). But if it is the proposer

who can threaten to take her outside option, she can appropriate the

entire surplus making a take-it-or-leave-it offer and, in this case, there

is multiplicity of equilibria for a range of outside options.

Considering uncertainty about outside options is a natural extension

of the literature that deserves attention. Nevertheless, bargaining mod-

els devoted to that subject are scarce.1 Wolinsky (1987) presents a model

1The literature of pretrial negotiation has an apparent similarity to models of

sequential bargaining with incomplete information and outside options. In these
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where players may search for outside opportunities during the bargaining

process. He shows that the outcome of the bargaining does not depend

only on the players’ relative efficiency in searching, but also on how ag-

gressively each party can credibly threaten to search in the event that the

agreement is delayed. Vislie (1988) extends Shaked and Sutton’s model

(1984) by allowing the presence of a second random outside option for

the seller, and finds the conditions under which the equilibrium price is

affected by this random appearance. And finally, Ponsati and Sakovics

(1999) analyze a bargaining game where both players have outside op-

tions but they are uncertain about their size. In all these models players

do not know with certainty either the existence or the size of their own

outside options. By contrast, in this paper we present a model where

players enjoy private information about their possibilities of opting out,

but they do not know their opponent’ opportunities.

We carry out our analysis within the simple framework of a War

of Attrition, a situation where there are only two available agreements

and each player favors one of them. The decision problem of each player

consists in deciding when to give in by accepting her opponent´s favorite

agreement. The distinctive feature of our model is that, since outside

options are present yielding takes two forms: a player can give in by

accepting her opponent’s favorite agreement, or by contrast, she can

give up, taking her option, and leaving her current partner to take her

outside payoff as well. Both players have private information about their

own outside options and are impatient in that delaying is costly. There

are two types of players: a weak type who has no outside option (or

whose outside option is without value) and a strong type who has a

models of litigation and pretrial negotiation (see Spier (1992), Wang et al, (1994))

only the plaintiff can opt out forcing the trial. But an important difference is that

in bargaining models both players would like to come to an agreement immediately

while in pretrial negotiation the plaintiff would like to settle as soon as possible and

the defendant to pay as late as possible.
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valuable outside option that she prefers to take rather than conceding.

We show that introducing the possibility of opting out in a War of

Attrition has a dramatic effect on the outcomes.2 We find that, if the

probability of facing a weak opponent is sufficiently low, in equilibrium,

the negotiation will surely end at some future date, since weak types

eventually become sufficiently pessimistic about the prospect of reaching

their preferred agreement so that, in fear that the opponent might opt

out, they concede with probability 1. On the other extreme, if the

likelihood of a weak opponent is high, strong types eventually opt out

with probability 1, leaving weak types to play, from that time on, the

symmetric inefficient equilibrium of the complete information War of

Attrition. Even in this case, the probability of concession along the

uncertainty phase of the equilibrium play increases.

The following section presents our bargaining model and character-

izes equilibria of this game. In section 3 we turn to an asymptotic

analysis of this game considering the limit as δ → 1, and carry out

comparative statics. Conclusions are presented in the last section.

2In a very different model, Compte and Jehiel (2000) find also that outside options

have a positive effect on bargaining. They show that the existence of outside options

may cancel out the effect of obstinacy in bargaining.

4



2 The model

The following bargaining situation is studied. Two players bargain about

how to share one unit of surplus that will be available only when they

reach an agreement. An agreement is denoted by x, where x indicates

the portion of the surplus assigned to player 1. There are only two

possible agreements; either x = 1− a or x = a with 0 < a < 1
2
. Players

may also decide to break the negotiation by opting out, in which case,

they receive a payoff bi i = 1, 2.

In this game there are three possible bargaining outcomes; either an

agreement is reached, or negotiations break, or perpetual disagreement

prevails.

Players are assumed to be risk neutral and impatient. Their impa-

tience is modeled by a common discount factor, normalized to be δ per

unit of time. And the payoffs are as follows: if players perpetually dis-

agree, they both receive zero payoff. If only player i concedes at time t,

then player i gets aδt and player j gets (1−a)δt. If both players concede
at the same time each players gets aδt3. And if either or both players

opt out, payoffs are biδ
t for i = 1, 2.

Each player i has private information about the value of her outside

opportunity, which can be either bi = 0 or bi = b, a < b < 1 − a. A
player with no outside option (or whose outside option is 0) is a weak

type, denoted asW, and a player with an outside option b > 0 is a strong

type, denoted as S. Strong types always prefer opting out rather than

conceding and weak types prefer conceding rather than opting out. The

players entertain beliefs about each other’s type and they are represented

by an initial probability 0 < πi0 < 1, that is, the probability that player

i is weak. We assume that these probabilities are common knowledge

3This assumption is computationally convenient. Results do not change substan-

tially if we assume that in the case that both players concede at the same time a

lottery is used to decide the outcome.
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and we set πi0 = π0 for simplicity.

The game is played in discrete time, starting at t = 0. At each

time (a stage), both players decide simultaneously either: (i) to propose

her preferred agreement, (ii) to concede by proposing her opponent’s

favorite agreement or (iii) to leave the negotiation and opt out. The

game ends whenever a player or both, at the same time, concedes or

opts out. Otherwise, disagreement occurs, discounting applies and the

game proceeds to a new stage.

The history ht observed by the players is just the fact that no player

has yielded before t (no player has conceded or has opted out).

A strategy σi(τ) of player i with type τ = W,S is defined as a pair

of sequences σi(τ) =
©
αit(τ),β

i
t(τ)

ª∞
t=0

where αit(τ) is the probability of

conceding at t and βit(τ) is the probability of opting out at t, given that

no player yields before that time. Let σ = (σi(W ),σi(S),σj(W ),σj(S)).

A system of beliefs πi for player i maps each observed history into

some probability measure on the types W and S of player j. Let Π =

(πi,πj).

Given a strategy-belief profile (σ,Π), the expected payoff of player i

of not conceding at t, conditional on the history ht, is

V iWt = πjtα
j
t(1− a) + δ

£
1− πjtα

j
t − (1− πjt)β

j
t

¤
V iWt+1 ,

and the expected payoff of not opting out at t is

V iSt = πjtα
j
t(1− a) + (1− πjt)β

j
tbi + δ

£
1− πjtα

j
t − (1− πjt)β

j
t

¤
V iSt+1.

Since we are interested on the role played by outside options on the

efficiency and outcome of the War of Attrition, we find appropiate to

examine the Symmetric Perfect Bayesian Equilibria of this game given

that inefficiency arises in a War of Attrition when players are constrained

to use symmetric strategies.

The Symmetric Perfect Bayesian Equilibrium (SPBE) is defined in

the usual way. A strategy-belief profile (σ,Π) is a SPBE if, at any stage
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of the game, strategies are optimal given the beliefs, and the beliefs are

obtained from equilibrium strategies and observed actions using Bayes’

rule:

πit =
πit−1(1− αit−1)

πt−1(1− αit−1) + (1− πit−1)(1− βit−1)
.

Notice that πit is not defined if α
i
t−1 = βit−1 = 1. If the optimal

strategy tells a player to concede and opt out at some t with probability

1, then to stay at t+1 is a probability 0 event and Bayes’ rule does not

pin down posterior beliefs. Any posterior beliefs are then admissible.

Symmetry in strategies implies that αit = αjt = αt and βit = βjt = βt.

Since in a SPBE a weak type will never opt out and a tough type

will never concede, in an abuse of terminology, we will identify the prob-

abilities of conceding αt with the strategy of the weak type, and the

probabilities of opting out βt with the strategy of the tough type.

The first result is quite straight forward.

Proposition 1. There is no SPBE in pure strategies.

Proof. See Appendix.¥
We next turn attention to profiles where players randomize. In a

SPBE in mixed strategies, it must be true that the payoff of conceding

at t, conditional on the opponent not having conceded or opted out

previously, must be equal to the payoff of conceding at t+1. At the

same time, the payoff of opting out at t, conditional on the opponent

not having yielded in before, must be equal to the payoff of opting out

at t+1:

a = (1− a)πtαt + aδ(1− πtαt − (1− πt)βt),

b = (1− a)πtαt + b(1− πt)βt + bδ(1− πtαt − (1− πt)βt).
(1)

Next lemma points out that, in a SPBE it is not possible to have

both types yielding at the same time with probability 1. And if the
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equilibrium is such that weak types concede with probability 1 at some

t, then strong types certainly opt out at t+1.

Lemma 1. If {αt}∞0 and {βt}∞0 are SPBE, then:

(i) there is no t such that αt = βt = 1

(ii) If αt = 1 and 0 < βt < 1 then βt+1 = 1.

Proof. Statement (i) indicates that, in equilibrium, it is not possible

that both types yield at the same time with probability 1. If the strategy

of the opponent is to concede and to opt out at some t with probability

1, then a strong player will have always incentives to wait one period

since b < (1− a)πt+ b(1− πt), breaking the symmetry of the strategies.

Statement (ii) establishes that, if the weak type strategy yields a period

t probability of conceding of unity, then to opt out at t+1 dominates

doing so in t+2, since waiting until period t+2 discounts their payoff

and provides no additional probability that a weak type will make a

concession.¥
In a SPBE, both types distribute concessions across time. The equi-

librium strategies are characterized by the pair of difference equations

(1). To simplify notation let,

H =
ab(1− δ)

aδ(1− a− δb) + b(1− δ)(1− a− δa)
,

G =
(1− δ)(1− a)(b− a)

aδ(1− a− δb) + b(1− δ)(1− a− δa)
.

Our system of equations (1) can be rewritten as

αtπt = H.

βt(1− πt) = G.

Substituting these expressions on the posterior probability πt, we

have the difference equation that rules the posterior:

πt − πt−1
1−H −G +

H

1−H −G = 0.
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Solving this difference equation with the initial condition π0,

πt =
H

H +G
+ (π0 − H

H +G
)

µ
1

1−H −G
¶t
.

For what follows we analyze the different profiles that can be sus-

tained as equilibria.

Concession Equilibria

A Concession Strategy Profile is a strategy profile where weak types

eventually concede with probability 1.

Define T as the natural number that solves:

H
H+G

+ (π0 − H
H+G

)( 1
1−H−G)

t≤ H ≤ H
H+G

+ (π0 − H
H+G

)( 1
1−H−G)

t−1.

Our result, stated below as Proposition 2, shows that if the initial

probability of facing a weak type is π0 ∈
¡
0, H

H+G

¢
in equilibrium players

will not continue in the game indefinitely. Instead, we can identify a

period T , which depends upon the parameters of the game (a, b, δ,π0),

with the property that weak types will never delay play beyond period

T and strong types never stay beyond T + 1. Moreover, if π0 ∈ (0,H] ,
the game ends at T = 0.

A Concession Equilibrium is described by finite pairs of sequences

{αt}Tt=0 and {βt}T+1t=0 identifying the indifference valuations in each period

and a sequence of beliefs {πt}Tt=0. The posterior πt deteriorates over time;
as time passes, players become more pessimistic about their opponents

being a weak type. That fact will naturally affect the probability of

conceding αt which increases over time and the probability of opting

out βt which decreases. At some time t = T the probability that her

opponent is strong is so high that a weak type optimally concedes with

probability 1 since the chance to receive her preferred agreement is too

small. And, as stablished on Lemma 1, a strong type will opt out at

T +1 with probability 1 if this agent infers that her opponent is strong.
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If the period T is reached by which a weak type would have conceded, the

strong type infers that the opponent is as strong as she is. If both players

prefer opting out rather than conceding, they will leave the negotiation

immediately since there is no possibility to receive 1 − a from their

opponents and delaying their way out only decreases their payoffs.

The formal statement of this result follows:

Proposition 2. If π0 ∈ (0, H] , there is a unique SPBE such that
αt = βt+1 = 1 ∀t ≥ 0 and β0 =

b(1− δ)− π0(1− a− δb)

b(1− δ)(1− π0)
. And if

π0 ∈
¡
H, H

H+G

¢
, the unique SPBE is such that :

αt =
H

H
H+G

+(π0− H
H+G

)
³

1
1−H−G

´t , ∀t < T ,
βt =

G

1−
·

H
H+G

+(π0− H
H+G

)
³

1
1−H−G

´t¸ , ∀t ≤ T ,

and αt = βt+1 = 1 ∀t ≥ T .

Proof. We prove Proposition 2 for π0 ≤ H. The rest is detailed in
the appendix.

Let us check first the optimal response of both types to the opponent’s

strategy ({αt}∞0 {βt}∞0 ) such that αt = βt+1 = 1 ∀t ≥ 0 and β0 =
b(1−δ)−π0(1−a−δb)

b(1−δ)(1−π0) . Notice that, given this strategy of the opponent, πt = 0

∀t ≥ 1.
A weak type concedes optimally at t=0 if:

a > π0α0(1− a) + aδ(1− π0α0 − (1− π0)β0), for t = 0.

a > πtαt(1− a) + aδ(1− πtαt − (1− πt)βt), ∀t ≥ 1.

The second inequality is automatically satisfied since πt = 0. And

the first inequality is satisfied since π0 6 H.
Consider now a strong type. If the strategy of her opponent is to

concede at t=0 with probability 1, then, by Lemma 1, she will opt out

10



with probability 1 at t=1. And at t=0 she opts out with probability β0 =
1

1−π0−( π0
1−π0 )

(1−a−δb)
b(1−δ) since b = π0(1−a)+b(1−π0)β0+bδ(1−π0)(1−β0).

Now we prove that if π0 ≤ H, then the unique SPBE must be

({αt}∞0 , {βt}∞0 ) such that αt = 1 ∀t ≥ 0 and β0 =
b(1−δ)−π0(1−a−δb)

b(1−δ)(1−π0)
βt = 1 ∀t ≥ 1. To see that, indeed this is the unique SPBE, we explore
all the other possible candidates.

First, assume that there is a SPBE (
n ∼
αt
o∞
0
,
n ∼
βt

o∞
0
) with 0 <

∼
α0< 1,

0 <
∼
β0< 1 and

∼
β0 6= b(1−δ)−π0(1−a−δb)

b(1−δ)(1−π0) . If these were equilibrium strategies,

then it must be true that:

π0
∼
α0= H.

(1− π0)
∼
β0= 1−G.

But since π0 ≤ H then
∼
α0≥ 1, a contradiction.

Second, assume that (
n ∼
αt
o∞
0
,
n ∼
βt

o∞
0
) is an equilibrium with

∼
α0=

1 and 0 <
∼
β0< 1 with

∼
β0 6= b(1−δ)−π0(1−a−δb)

b(1−δ)(1−π0) . Then if these strategies

constitute a SPBE, it must be true that:

a > (1− a)π0 + aδ(1− π0)(1−
∼
β0),

and

b = (1− a)π0 + b(1− π0)
∼
β0 +bδ(1− π0)(1−

∼
β0).

But if
∼
β0 6= b(1−δ)−π0(1−a−δb)

b(1−δ)(1−π0) , the second condition is violated; either a

strong type will deviate by opting out at t=0 if
∼
β0<

b(1−δ)−π0(1−a−δb)
b(1−δ)(1−π0) or

by never opting out if
∼
β0>

b(1−δ)−π0(1−a−δb)
b(1−δ)(1−π0) .

Finally, assume that (
n ∼
αt
o∞
0
,
n ∼
βt

o∞
0
) is an equilibrium with 0 <

∼
α0<

1 and
∼
β0=

b(1−δ)−π0(1−a−δb)
b(1−δ)(1−π0) . Then,

a = (1− a)π0 ∼
α0 +aδ(1− π0

∼
α0 −(1− π0)

∼
β0).

b = (1− a)π0 ∼
α0 +b(1− π0)

∼
β0 +bδ(1− π0

∼
α0 −(1− π0)

∼
β0).
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But if
∼
β0=

b(1−δ)−π0(1−a−δb)
b(1−δ)(1−π0) the first condition is not satisfied since

∼
α0>

1.¥

Opting Out Equilibria

An Opting Out Profile is characterized by strong types taking their

outside opportunities at some time with probability 1, leaving weak types

to play as in the complete information War of Attrition from that time

on.

Define as T the natural number that solves:

H
H+G

+ (π0 − H
H+G

)( 1
1−H−G)

t−1 ≤ 1−G ≤ H
H+G

+ (π0 − H
H+G

)( 1
1−H−G)

t.

The next proposition shows that, if the probability of facing a weak

type is relatively high, the optimal strategy of a strong type is such

that she opts out at period T > 0 with probability 1, and the optimal
strategy of a weak type, from time T on, is to concede with a constant

probability.

Proposition 3. If π0 ∈
¡

H
H+G

, 1−G¢ , the unique SPBE is such
that:

αt =
H

H
H+G

+(π0− H
H+G

)
³

1
1−H−G

´t , ∀t ≤ T ,
βt =

G

1−
·

H
H+G

+(π0− H
H+G

)
³

1
1−H−G

´t¸ , ∀t < T ,

βt = 1 and αt+1 = α = a(1−δ)
1−a−δa ∀t ≥ T .

And if π0 ∈ [1−G, 1) βt = 1 ∀t > 0 and α0 =
a(1−δπ0)
(1−a−δa)π0 , αt = α =

a(1−δ)
(1−a−δa) ∀t ≥ 1.

Proof. See Appendix.¥
In an Opting Out Equilibrium, weak types place a small probability

of concession at each period. The posterior of facing a weak type op-

ponent πt increases over time, but the probability αt that weak types
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concede decreases. In equilibrium, there will be some time t = T such

that the optimal concession probability of the weak types cannot induce

strong types to stay in the game beyond T since the payoff they get by

opting out at that time, b, is greater than the expected payoff of wait-

ing an aditional period for (1− a). After T the posterior probability of
facing a weak opponent is 1. Players that are still at the negotiation

table recognize themselves as weak types and thus, from that period T

on, they play the Symmetric Perfect Equilibrium of the complete infor-

mation War of Attrition without outside options. In this continuation

the equilibrium concession probability remains constant over time at

αt+1 =
a(1−δ)
1−a−δa ∀t ≥ T .

On the other hand, Proposition 3 also tells us that if the initial

probability of facing a weak type is close to 1, that is, if π0 ∈ [1−G, 1),
then, in equilibrium, strong types opt out with probability 1 at T = 0.

In this case, even if the probability of facing a weak opponent is very

high, the probability of receiving the preferred agreement is sufficiently

low to make it worthwhile for a strong type to leave the negotiation

immediately.

In an Opting Out Equilibrium players try to screen each other´s type

by prolonging the game and thus imposing a delay cost on the opponent,

as well as on themselves. After some time, strong types are convinced

that they will never receive their preferred agreement and decide to opt

out. From that moment on, nothing can convince players that the other

will ever concede for sure, and thus they adopt the symmetric equilibrium

strategies of the classical War of Attrition.

Pooling Equilibrium

The next proposition establishes the unique combination of parame-

ters (a, b, δ,π0) for which the SPBE is pooling. Players follow strategies

such that both types randomize at the same constant rate between yield-
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ing and not yielding. Therefore, there is no learning and T =∞.

Proposition 4. If π0 =
H

H+G
, the unique symmetric PBE is αt =

βt = H +G, ∀t ≥ 0.
Proof. See Appendix.¥
If the probability of facing a weak opponent is exactly π0 =

H
H+G

, in

equilibrium, both types remain indifferent about conceding and opting

out at every time. That is, in terms of randomized strategies, each

player believes, at each time, that the probabilities that the opponent

concedes or opts out at subsequent times are exactly so as to make

continuation marginally worthwhile. No information is revealed along

this equilibrium. No player updates his beliefs about the weakness of

her opponent since if players concede and opt out at each time with the

same probability, the posterior πt is constant over time.

The next table summarizes our results so far:

Our characterization of the unique SPBE allows meaningful compar-

ative statics results. We carry out this exercise for the limit, as δ → 1.

This is the object of the next section.
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3 Comparative Statics.

In this section we conduct comparative statics by analyzing the effects of

change in the parameters in the limit of the game as the interval between

periods becomes arbitrarily small. Let the length of each period in real

time be denoted by ∆, 0 << 1(there are 1
∆
periods per unit of time), so

that we can replace the term δ by e−∆.We are interested in the limit of

SPBE as ∆→ 0.

It is easily checked that H
H+G

is independent of ∆ and that limH
∆→0

= 0,

limG
∆→0

= 0. The limit period T , beyond which weak types will never

continue in the negotiation in a Concession Equilibrium (see Proposition

2) and the limit period T , beyond which strong types will surely opt out

in an Opting Out Equilibrium (see Proposition 3), are given as functions4

of the parameters of the game (a, b,π0) as:

T (π0, a, b) =
−a(1−a−b)
(b−a(1−a)) ln

h
b(a−π0)+aπ0(1−a)

ab

i
, for π0 ∈

¡
0, H

H+G

¢
,

T (π0, a, b) =
−a(1−a−b)
(b−a(1−a)) ln

h
b(π0−a)−aπ0(1−a)

(1−a)(b−a)
i
for π0 ∈

¡
H

H+G
, 1
¢
.

Next figure displays T and T as functions of π0 for a representative

case ( a = 1
4
, b = 3

8
).

4See appendix for the derivation of these functions.
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We want to evaluate how T and T change as the result of changes in

the parameters (a, b,π0). We carry out this exercise in order to measure

the effect on those parameters changes in the efficiency. We conjecture

that efficiency improves as T decreases and T increases. A general proof

for this conjecture is work in progress.

Next proposition establishes that an increase in the likelihood that

the opponent has a valuable outside option reduces T and increases T .

Proposition 5. T decreases and T increases as π0 decreases.

Proof. See Appendix.¥
Next we will analyze the effect of an increase of a on the limit periods

T and T . Define the following sets of parameters:

S1 =
©
(a, b) such that b ≤ (1− a)2ª ,

S2 =

½
(a, b) such that b > (1− a)2 and a(1− a− b)(b− a2)

(1− a)(b− a)(b− (1− a)2) > 1
¾
,

S3 =

½
(a, b) such that b > (1− a)2 and 0 < a(1− a− b)(b− a2)

(1− a)(b− a)(b− (1− a)2) < 1
¾
.

Let x = b(π0−a)−aπ0(1−a)
(1−a)(b−a) and

∼
x be the solution to:

(b− (1− a)2) ln [x] + a(1−a−b)(b−a2)
(1−a)(b−a) (

1

x
− 1) = 0. (2)

Proposition 6. (i) T decreases as a increases. (ii) T increases as

a increases ∀(a, b) ∈ S1 ∪ S2. If (a, b) ∈ S3, then ∂T
∂a
≥ 0 if x ∈

³
0,
∼
x
i

and ∂T
∂a
< 0 if x ∈ (∼x, 1).

Proof. See Appendix.¥
We see that efficiency improves as a increases if a and b are close since

an increase on a reduces the time at which weak types concede with prob-

ability 1 in a Concession Equilibrium, and increases the time at which
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strong types opt out with probability 1 in an Opting Out Equilibrium.

However, the effect of the concession payoff a on T when a and b are far,

depends on the relationship between a, b and π0. In the next example

we find the initial probability π∗0 such that
∂T
∂a
> 0 if π0 ∈

¡
H

H+G
,π∗0
¤
and

∂T
∂a
< 0 if π0 ∈ (π∗0, 1).

a b π∗0
1
3

58
100

0.722556

1
3

6
10

0.631353

1
3

62
100

0.562209

If the value of the outside option is only slightly greater than the

concession payoff, then the range of probabilities π0 for which an increase

of the size of the concession payoff improves efficiency is bigger.

Finally we analyze the effect of an increase in the value of the outside

option, b, on T and T . Define y = b(a−π0)+aπ0(1−a)
ab

and let
∼
y the solution

to:

ln [y] + a(1−a−b)
b(1−a) (

1

y
− 1) = 0. (2)

Proposition 7. (i) T increases as b increases. (ii) ∂T
∂b
≤ 0 if y ∈³

0,
∼
y
i
and ∂T

∂b
> 0 if y ∈ (∼y, 1).

Proof. See Appendix.¥
If the value of the outside option increases, strong types take longer to

opt out with probability 1 in an Opting Out Equilibrium. However, the

effect of b on T , is not clear cut. In this case the sign of this derivative will

depend on the relationship between a, b and π0. Since is not possible to

find an analytical solution to the equation (2), we make some numerical

computations. Notice that finding
∼
y is equivalent to find the initial

probability π∗0 such that
∂T
∂b
< 0 if π0 ∈ (0,π∗0] and ∂T

∂b
> 0 if π0 ∈

(π∗0,
H

H+G
). The following table shows some numerical examples:

17



a b π∗0
1
3

2
5
0.638251

1
4

2
5
0.413369

1
5

2
5
0.301117

We see that the difference between a and b matters. If the value of

the outside option is only slightly greater than the concession payoff,

then the range of probabilities π0 for which an increase of the size of the

outside option improves efficiency is bigger.

4 Conclusions

In this paper we have explored the effect of the private information

about outside options on the outcomes of negotiations. In order to ad-

dress this issue we analyzed a War of Attrition allowing players to leave

the negotiation in order to opt out and we characterized the Symmetric

Perfect Bayesian Equilibrium of this game. There are two types of play-

ers: a weak type who has a valueless outside option-she always prefers

conceding rather than opting out- and a strong type who has a valu-

able outside option that she prefers to take rather than conceding. We

show that uncertainty about the possibility that the opponent opts out

improves efficiency, since it increases the equilibrium probability of con-

cession. More precisely, if the probability that the opponent is strong

is relatively high, in equilibrium, the negotiation eventually ends with a

sure concession. In these cases, we are able to identify a time T at which

a player with a valueless outside option, will concede with probability 1,

and a player with an outside option will wait to obtain a concession until

T + 1; then, she will opt out with probability 1. On the other extreme,

if the likelihood of a weak opponent is high, strong types stay in the

game for a while and eventually leave the negotiation and opt out with

18



probability 1. From that date T on, weak types play the (inefficient)

symmetric equilibrium of the classical War of Attrition with complete

information. Even in this case, the probability of concession by weak

types along the uncertainty phase of the equilibrium play increases.
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Proof of Proposition 1

A pure strategy for player i type τ =W,S, is a time tτi at which she

plans to yield (to concede is she is weak and to opt out is she is strong)

given than no player yields before that time. If a pure SPBE exists, then

tWi = tWj = tW and tSi = t
S
j = tS. Assume that tS ≤ tW . Thus, strong

types know that, in equilibrium, weak types do not concede before they

opt out with certainty. Then, it is optimal for a strong type to opt out at

period 0, so she avoids any discounting of the payoff. The same happens

to a weak type, since she knows she is not going to get any concession

from her opponent. Thus, if there is a SPBE with tS ≤ tW , it must be
tW = tS = 0. But this cannot be an equilibrium since strong types will

deviate from this strategy by delaying at least one period the decision

of opting out since b < (1− a)π0 + b(1− π0).

The other potential equilibrium is tW < tS in which case tW = 0 and

tS = x with x ≥ 1. If weak types concede in equilibrium at t=0, then

it must be true that a ≥ (1 − a)π0 + aδ(1 − π0) or π0 ≤ a(1−δ)
1−a−δa . Since

π0 ≤ a(1−δ)
1−a−δa <

b(1−δ)
1−a−δb , strong types deviate and opt out at t=0 since

b > (1− a)π0 + bδ(1− π0).¥

Proof of Proposition 2b

Consider the equation that rules the posterior:

πt =
H

H +G
+ (π0 − H

H +G
)

µ
1

1−H −G
¶t
.

If π0 < H
H+G

, πt is decreasing over time and, thus αt =
H

πt
increases. At

some period t, αt reaches the value of 1. We denote that time as T . In

order to identify the time T we must use:

πT−1αT−1 = H,

πTαT ≤ H.

20



Since αT = 1 and αT−1 < 1 then πT−1 ≥ H ≥ πT . Using the solution

for πt, T will be the natural number that solves:

H
H+G

+ (π0 − H
H+G

)( 1
1−H−G)

t ≤ H ≤ H
H+G

+ (π0 − H
H+G

)( 1
1−H−G)

t−1.

By lemma 1 we know that if αT = 1 then βT+1 = 1.¥

Proof of Proposition 3

If H
H+G

< π0 < 1−G, then πt is increasing over time and βt increases

until, at some point, it reaches the value of 1. We denote as T that time

and

(1− πT ∗H−1)βT−1 = G,

(1− πT )βT ≤ G.

Since βT = 1 and βT−1 < 1, then 1− πT−1 ≥ G ≥ 1− πT . Using the

solution of πt, T will be the natural number that solves:

H
H+G

+ (π0 − H
H+G

)( 1
1−H−G)

t−1 ≤ 1−G ≤ H
H+G

+ (π0 − H
H+G

)( 1
1−H−G)

t.

Since βT = 1, then πt = 1 ∀t ≥ T + 1. Players that are still playing
are weak types and thus αt =

a(1−δ)
1−a−δa for t > T + 1.

If 1−G 6 π0, the SPBE is βt = 1 ∀t ≥ 0 and α0 =
a(1− δπ0)

(1− a− δa)π0

αt =
a(1− δ)

1− a− δa
∀t ≥ 1. Then, a weak type will optimally randomize

between conceding and not conceding at each t if:

a = π0α0(1− a) + aδ(1− π0α0 − (1− π0)β0),

a = πtαt(1− a) + aδ(1− πtαt − (1− πt)βt) ∀t ≥ 1.

Given these strategies, πt = 1 ∀t ≥ 1. We substitute βt = 1 ∀t ≥ 0
and α0 =

a(1− δπ0)

(1− a− δa)π0
αt =

a(1− δ)

1− a− δa
in those equations and check

if they are satisfied ∀t.
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Consider now a strong type. Given the opponent’s strategy, βt = 1

∀t ≥ 0 and α0 =
a(1− δπ0)

(1− a− δa)π0
αt =

a(1− δ)

1− a− δa
∀t ≥ 1 he will opt out

with probability 1 from period 0 on if:

b > π0α0(1− a) + b(1− π0)β0 + bδ(1− π0α0 − (1− π0)β0) = 0,

b > πtαt(1− a) + b(1− πt)βt + bδ(1− πtαt − (1− πt)βt) for t ≥ 1

Since πt = 1 ∀t ≥ 1, the second condition is satisfied if b > αt(1 −
a) + bδ(1− αt). Substituting αt,

b >
a(1− δ)

1− a− δa
(1− a) + bδ(1− a(1− δ)

1− a− δa
).

Or b(1−δ)
1−a−δb >

a(1−δ)
1−a−δa that is true since b > a.

At t=0 it must be satisfied that b > π0(1−a)α0+b(1−π0)+bδπ0(1−
π0α0). Substituting α0 and β0 it is easy to check that this equation is

satisfied only if π0 ≥ 1−G.
Now we will prove that if π0 ≥ 1− G, the unique symmetric SPBE

is {{αt}∞0 {βt}∞0 } such that βt = 1 ∀t ≥ 0 and α0 =
a(1− δπ0)

(1− a− δa)π0
,

αt =
a(1− δ)

1− a− δa
∀t ≥ 1. We will explore all possible candidates and see

that, indeed, this is the unique SPBE.

First, consider a SPBE
½n ∧

αt
o∞
0
,

½ ∧
βt

¾∞
0

¾
such that 0 <

∧
αt< 1 and

0 <
∧
βt< 1 ∀t ≥ 0. Then,

a = (1− a)πt ∧αt +aδ(1− πt
∧
αt −(1− πt)

∧
βt),

b = (1− a)πt ∧αt +b(1− πt)
∧
βt +bδ(1− πt

∧
αt −(1− πt)

∧
βt),

for ∀t ≥ 0. At t=0 these conditions are rewritten as:

∧
α0 π0 = H,
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∧
β0 (1− π0) = G.

But since π0 ≥ 1 − G,
∧
β0≥ 1 contradicting the assumption that

0 <
∧
βt< 1 ∀t ≥ 0.
Second, assume that there is a SPBE such that

∧
βt= 1 ∀t ≥ 0 and

0 <
∧
αt< 1 such that

∧
α0 6= a(1− δπ)

(1− a− δa)π
,
∧
αt 6= a(1− δ)

1− a− δa
∀t ≥ 1. Notice

that if
∧
β0= 1 and 0 <

∧
α0< 1 then π1 = 1. But this cannot be an

equilibrium since a weak type will deviate and concede with probability

1 at t = 1 if
∧
α1<

a(1−δ)
1−a−δa since a > (1− a)

∧
α1 +aδ(1− ∧

α1) and will never

concede if
∧
αt>

a(1−δ)
1−a−δa . The same happens at t=0.

And finally, assume that there is a SPBE with 0 <
∧
βt< 1 ∀t ≥ 0 and

∧
α0=

a(1− δπ0)

(1− a− δa)π0
,
∧
αt=

a(1− δ)

1− a− δa
∀t ≥ 1. In that case, at t=0, it

must be true that:

a = (1− a)π0 ∧
α0 +aδ(1− π0

∧
α0 −(1− π0)

∧
β0)

b = (1− a)π0 ∧
α0 +b(1− π0)

∧
β0 +bδ(1− π0

∧
α0 −(1− π0)

∧
β0)

Substituting
∧
α0=

a(1− δπ0)

(1− a− δa)π0
in the first condition, it must be

that
∧
β0= 1 contradicting that 0 <

∧
βt< 1 ∀t ≥ 0.¥

Proof of Proposition 4

Now consider the case π0 = H
H+G

. Then πt = π0 and αt =
H

π0
= H+G

and βt =
G

1−π0 = H +G ∀t ≥ 0.¥

The derivation of T and T .

We reduce the length of each period to 0 < ∆ < 1 (there are 1
∆

periods per unit of time) and the term δ is replaced by e−∆. Define:
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H
0
=

ab(1− e−∆)
ae−∆(1− a− e−∆b) + b(1− e−∆)(1− a− e∆a)

G
0
=

(1− e−∆)(1− a)(b− a)
ae−∆(1− a− e−∆b) + b(1− e−∆)(1− a− e−∆a)

H
0

H 0 +G0 =
ab

b− a(1− a)
H
0

H0+G0 is independent of ∆. It is easily checked that lim∆→0
H

0
= 0 and

lim
∆→0

1−G = 1..
Proposition 2 establishes that we can identify an ending period T at

which the equilibrium probability of conceding is 1 if π0 ∈
³
H

0
, H

0

H0+G0

´
.

This T is the natural number that solves:

H
H+G

+ (π0 − H
H+G

)( 1
1−H−G)

t
∆ ≤ H ≤ H

H+G
+ (π0 − H

H+G
)( 1
1−H−G)

t
∆
−∆.

Or, for each possible expected delay T we have a compatible interval

of π

π0 ∈
³

H
0

H0+G0 (1− (1−H
0 −G0

)
t
∆ ), H

0

H0+G0 (1− (1−H
0 −G0

)
t
∆
+∆
i
.

The size of this interval tends to 0 as ∆→ 0. Hence, in the limit, we

have a function

π0 =
H

0

H 0 +G0
£
1− e−tI¤

with I = b−a(1−a)
a(1−a−b) . Or, given the parameters of the game (a, b,π0)

T =
−1
I
ln(1− H

0
+G

0

H
0 π0)

We consider now the interval of probabilities π0 ∈
³

H
0

H0+G0 , 1−G
0
´
.

Proposition 4 shows that, in equilibrium, strong types won’t remain in
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the game beyond some period T that can be identified as the natural

number that solves:

H
H+G

+(π0− H
H+G

)( 1
1−H−G)

t
∆
−∆ ≤ 1−G ≤ H

H+G
+(π0− H

H+G
)( 1
1−H−G)

t
∆

We compute the interval of probabilities for which T = t
∆
,

π0 ∈
h

H
0

H
0+G0 +

G
0

H
0+G0 (1−H

0 −G0
)
t
∆
+∆, H

0

H
0+G0 +

G
0

H
0+G0 (1−H

0 −G0
)
t
∆

i
As ∆ goes to 0 the size of this interval tends also to 0 and

π0 =
H

0

H 0 +G0 +
G

0

H 0 +G0 e
−tI

Therefore

T =
−1
I
ln

·
π0(
H

0
+G

0

G0 )− H
0

G0

¸

Proof of Proposition 5

We simply compute the partial derivatives of T and T with respect

to π0. Denote as y =
b(a−π0)+aπ0(1−a)

ab
and x = b(π0−a)−aπ0(1−a)

(1−a)(b−a) . Then,

∂T
∂π0

= (1−a−b)
by

> 0,

∂T
∂π0

= −a(1−a−b)
(1−a)(b−a)x < 0,

since 0 < y < 1, 0 < x < 1 and a < b < 1− a.¥

Proof of Proposition 6

The partial derivative ∂T
∂a
is,

∂T
∂a
= 1

(b−a(1−a))2

·
b(b− (1− a)2) ln [y]− (1− a− b)(b− a2)(1

y
− 1)

¸
.
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In order to prove that ∂T
∂a
< 0 we will consider two cases:

(i) b > (1 − a)2. The sign of the derivative is clearly negative since
0 < y < 1 and a < b < 1− a.
(ii) b < (1− a)2. We study the function

F (y) = b(b− (1− a)2) ln [y]− (1− a− b)(b− a2)(1
y
− 1)

It is easy to check that F (1) = 0, F (0) = −∞ and F (y) has a

maximum on y∗ = −(1−a−b)(b−a2)
b2−b(1−a)2 . Since −(1−a−b)(b−a

2)
b2−b(1−a)2 > 1 then F (y) < 0

∀y ∈ (0, 1).
The derivative ∂T

∂a
is

∂T
∂a
= b

(b−a(1−a))2

·
(b− (1− a)2) ln [x] + a(1−a−b)(b−a2)

(1−a)(b−a) (
1

x
− 1)

¸
We study the sign of this derivative and find two cases:

(i) b ≤ (1− a)2. Clearly ∂T
∂a
> 0 since 0 < x < 1 and a < b < 1− a.

(ii) b > (1− a)2. The sign of ∂T
∂a
= signF (x) with F (x) = (b− (1−

a)2) ln [x] + a(1−a−b)(b−a2)
(1−a)(b−a)

£
1
x
− 1¤. This function has a minimum at x∗ =

a(1−a−b)(b−a2)
(1−a)(b−a)(b−(1−a)2) since F

00
(x∗) > 0 and takes the values F (0) = +∞

and F (1) = 0. Thus, if x∗ > 1, then ∀x ∈ (0, 1) F (x) > 0. Otherwise, if
x∗ < 1, then ∂T

∂a
> 0 ∀x ∈ (0,∼x) and ∂T

∂a
< 0 ∀x ∈ (∼x, 1) where ∼x is the

unique root of F (x) on the range x ∈ (0, 1).¥

Proof of Proposition 7

First, we compute the partial derivative of T with respect to b:

∂T
∂b
= a(1−a)

r(b−a(1−a))2

·
(1− a) ln [x]− a2(1−a−b)

(b−a)(1−a)(
1

x
− 1)

¸
< 0,

Now we derive ∂T
∂b
that is,

∂T
∂b
= a(1−a)2

r(b−a(1−a))2

·
ln [y] + a(1−a−b)

b(1−a) (
1

y
− 1)

¸
.

It is clear that sign∂T
∂b
= signJ(y) with J(y) = ln [y]+ a(1−a−b)

b(1−a) (
1
y
−1).
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This function takes values J(0) = +∞ and J(1) = 0 and its deriva-

tive J
0
(y∗) = 0 with y∗ = a(1−a−b)

b(1−a) . It is easy to check that J(y
∗) < 0

and that J(y) is decreasing on (0, y∗) and increasing on (y∗, 1). Since
a(1−a−b)
b(1−a) < 1, then J(y) has a unique root on the range y ∈ (0, 1). This
root is the

∼
y that solves the equation

ln [y] + a(1−a−b)
b(1−a) (

1

y
− 1) = 0.

Then, J(y) > 0 if y ∈ (0, ∼y) and J(y) < 0 if y ∈ (∼y, 1).¥
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