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Abstract

The goal of this paper is to study irreversible investment under incom-
plete information. We extend McDonald and Siegel’s (1986) model to the
case where the expected rate of return of the project cannot be observed
but is known to be either low or high. Waiting and observing the realiza-
tions of the value of the project provides information to the investor who
can update her beliefs about the true value of the expected return. Uncer-
tainty increases the option value of waiting but damages the quality of the
signal received. We show that beliefs follow a martingale and the optimal
investment trigger depends on the degree of optimism. We obtain that the
investment trigger frontier of a Bayesian investor lies below the one of a
non-updating belief investor.
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ABSTRACT

We introduce incomplete information into McDonald-Siegel’s (1986) model
of irreversible investment. The project average growth rate cannot be observed
but is known to be constant, either low or high. Waiting and observing the
realizations of the project value allows the investor to update her beliefs about the
true average growth rate value. Uncertainty has an ambiguous effect as it increases
the option value of waiting but damages the quality of the signal received. As far
as investment timing is concerned, the investment trigger frontier of a Bayesian
investor lies below the one of a non-updating belief investor.
Journal of Economic Literature Classification Numbers: D81, D83,

D92.
Keywords: Option Value, Learning, Uncertainty, Irreversible Investment.
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In the last two decades, the nature of the investment-uncertainty relationship
has been at the center stage of the investment literature, building on some earlier
works on investment by Jorgenson (1963) and Arrow (1968). In particular, schol-
ars have focused their attention on adjustment costs and irreversibility. Within a
continuous time framework, Abel (1983) shows that under perfect competition, in
presence of symmetric convex adjustment costs, more uncertainty (as measured
by a higher instantaneous variance of the output price) leads to an increase in the
optimal rate of investment, provided that the profit function is convex in prices.
Recently, Sarkar (2002) obtains that in a real option framework, an increase in
uncertainty can raise the probability of investing. Caballero (1991) identifies the
nature of competition as the key determinant of the relationship and shows that
under imperfect competition, the investment-uncertainty relationship can become
negative when the adjustment costs are highly asymmetric and the marginal prof-
itability of capital is sharply decreasing in the level of capital. Allowing for partial
reversibility, Abel and Eberly (1994) extend the Jorgensonian concept of user cost
to the case of uncertainty when a firm can purchase and sell some capital at dif-
ferent prices. Abel and Eberly (1996) develop a “unified model of investment
under uncertainty” incorporating both adjustment costs and irreversibility. They
obtain three different regimes: Positive investment, no investment and disinvest-
ment. The value of Tobin’s q, the shadow price of installed capital determines the
regime.
McDonald and Siegel (1986) were among the first to study the implications

of irreversibility on the timing of investment decisions. Since then, an extensive
literature in real options has emphasized the benefits from delaying the timing
of undertaking an irreversible investment. The seminal book, Investment under
Uncertainty, by Dixit and Pindyck (1994) represents a comprehensive review on
real options. The usual way of introducing uncertainty is to assume that the value
of a project (or some other economic indicator) follows a given (stochastic) law
of motion known by investor. Irreversibility implies that the optimal decision is
to wait until the value of the project hits a threshold (investment trigger) which
can be significantly higher that the cost of investing. The reason is that the
decision maker recognizes that investing means killing her option (and giving up
the benefits of delaying investment), so the associated opportunity cost should be
taken into account.
However, in many real life investment opportunities, the characteristics of a

project are hardly known with perfect accuracy. Applications include development
projects in new and unfamiliar markets, research and development, investing into
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start-up companies. The objective of this paper is to incorporate incomplete
information into the traditional real option framework and shed some additional
light on the role of uncertainty in irreversible investment decisions when learning
takes place.

This paper is at the crossroad of two literatures: Real options and the value
of information. McDonald and Siegel (1986) highlight “the value of waiting to
invest”. In this paper, we aim at characterizing the value of waiting to learn
(and invest). Some of the central issues of this paper are related to the work by
Bernanke (1983) and Venezia (1983). Bernanke (1983) points out that only un-
favorable outcomes actually matter for undertaking or postponing an investment.
In other words, the distribution of payoffs can be truncated and actually, only
the left tale is to be considered. He calls this effect the “bad news principle of
irreversible investment”. Venezia (1983) examines the case of a firm that can sell
an asset whose value is observable but its mean value is unknown. He obtains
that a Bayesian manager has more incentive to keep the asset than a manager
who does not revise her beliefs. Thus, the former has a higher reservation price
than the latter. Bernardo and Chowdhry (2002) consider the case of a firm that
can learn about its own resources and decide in an irreversible fashion to either
to exit the market (i), scale up its existing business (ii) or diversify its activities
(iii). They show that the firm chooses options (i) or (ii) if it accesses its resources
to be low enough. Conversely the firm chooses option (iii) when resources are
thought to be high enough. In the between, the firm keeps on experimenting.
Demers (1991) considers a risk neutral firm that is uncertain about the state of
demand and updates its beliefs using Bayes’ rule. He shows that irreversibility
and anticipation of receiving information signal in the future lead to a more cau-
tious investment behavior than under complete information. Cukierman (1980)
investigates how a risk neutral firm selects projects among several investment
opportunities. Increased uncertainty causes a decrease in the current level of in-
vestment by making it more profitable to wait longer for more information before
choosing an investment project.

In this article, we characterize the value of the information and focus on the im-
pact of optimism - defined as the beliefs that the investment project is “good”, on
an irreversible investment decision. Our information background is a continuous-
time model of Bayesian learning a la Bolton and Harris (1999). In their paper, the
authors derive the shadow value of experimenting. In this paper, the shadow value
is interpreted as the value of time of waiting to learn. In a similar information
framework, Keller and Rady (1999) and Cripps, Keller and Rady (2000) study
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optimal experimentation by a monopolist and a duopolist respectively. A closely
related work by Moscarini and Smith (2001) consider the case of a decision maker
who buys some information to improve the precision of a signal before undertaking
some action. They show that the optimal experimentation level increases with a
project’s expected payoff.

The main contribution of the paper is to clarify the effects of learning and
uncertainty on irreversible investment decisions in presence of incomplete infor-
mation. We consider the case of a risk neutral investor who discounts future at a
constant rate and knows that the expected return of the project is constant and
can only take two values, high or low. By waiting, the investor can observe the
realizations of the value of the project and update her beliefs about the project
type nature. Alternatively, the framework of this paper is suitable for analyzing
investment decision in natural resources as for instance investigated in Brennan
and Schwartz (1985) when the convenience yield is not observable.
The role of uncertainty (as measured by the instantaneous volatility of the

project) is now twofold. First, as in the classical model of irreversible investment,
more uncertainty induces the investor to require a larger wedge between the value
of the project that trigger investment and the cost of investing. Second, uncer-
tainty also affects the speed at which the investor updates her beliefs. If there is
a lot of uncertainty, observing the realizations of the value of the project provides
little information and consequently the investor’s beliefs evolve slowly. These two
effects work in opposite directions on the option value. As in the usual model,
due to the convexity of the payoff, uncertainty raises the option value of waiting
but in addition it damages the quality of the signal, thus reducing the information
value.
The model also allows us to study the impact of beliefs on investment decision

under uncertainty. If the investor becomes more optimistic, i.e., assigning a high
a probability that the average growth rate of the project is high, her option value
increases which in turn delays her investment decision. The comparison between
a Bayesian investor and a non-updating investor reveals that the former always
invests at a lower threshold than the latter: Information accelerates investment
measured in terms of threshold. As far as the timing of investment (measured by
the average time until investment takes place) is concerned, two opposing effects
compete. On the one hand, optimism increases the value of waiting, thus rising
the investment trigger value. On the other hand, optimism increases the expected
return of the investment (under the investor information structure) accelerating
the investment decision. Numerical simulations show that the overall effect of
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optimism on the average time until investment depends on how far away the
value of the project is from the optimal trigger investment frontier. The average
time is decreasing as a function of optimism for small values of the project and
then becomes hump shape as the value of the project rises and ultimately non-
decreasing when the value of the project gets close to the investment threshold
frontier.

The paper is organized as follows. Section 2 describes the economic setting
and provides analytical results on the option value, the effect of optimism on
the optimal investment frontier and the average time to invest. Section 3 displays
some numerical simulations. Section 4 concludes. Proofs of all results are collected
in the appendix.

1. The Economic Setting

We consider a standard irreversible investment problem. Time is continuous. A
firm has to choose optimally the timing of its investment under uncertainty. The
main innovation of the paper lies in the fact that the average growth rate (drift)
of the project is unknown and waiting provides some information about the true
value of the drift.

1.1. Investment opportunity and information structure

Uncertainty is modeled by a probability space (Ω,F , Pw) on which is defined a one
dimensional (standard) Brownian motion w. A state of nature ω is an element of
Ω. F denotes the tribe of subsets of Ω that are events over which the probability
measure Pw is assigned.

A risk neutral investor has to choose when to invest into a project whose value
V fluctuates across time according to a geometric Brownian motion

dV (t) = V (t) (µdt+ σdw(t)) , (1.1)

where dw(t) is the increment of a standard Wiener process under Pw, µ repre-
sents the average growth rate of the project and σ captures the magnitude of the
uncertainty.
The investment is irreversible with cost I > 0 and the future discount rate

r > 0 is a constant. The parameter µ is unknown to the investor but the latter
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knows that µ can only take two values, h (high) or l (low). For technical reasons,
we assume that r > h > l > 0.

An alternative formulation of the problem is the following. As in Brennan
and Schwartz (1985), the project V can represent a mine whose reserves Q are
constant and under a risk neutral probability measure Pw, the spot price S is
given by

dS(t) = S(t) ((r − δ)dt+ σdw(t)) .

r is the constant risk free rate and δ is the convenience yield rate that is not ob-
servable but known to be constant and can take only two possible values. Indeed,
the value of the mine V satisfies the same dynamics as (1.1). Setting δ = r − µ
brings us back to the first formulation which is used in the sequel.

Even though an investor does not observe the true value for µ, she can observe
the realizations across time of the project V and therefore infer the true value for
the drift. Let Ft be the σ-algebra generated by the observations of the value of the
project, {V (s); 0 ≤ s ≤ t)} and augmented. At time t, the investor’s information
set is Ft. The filtration F = {Ft, t ∈ R+} is the information structure and satisfies
the usual conditions (increasing, right-continuous, augmented). At time t, let p(t)
be the probability or the investor’s beliefs that µ is equal to h, i.e., p(t) = Pr(µ =
h | Ft). Using Bayes’ rules, the evolution across time of the posterior probability
p is given by the following lemma.

Lemma 1. The law of motion of the posterior beliefs P is

dp(s) =
h− l

σ
p(s)(1− p(s))dwp(s),

where

dwp(s) =
1

σV (s)

¡
dV (s)− EP [dV (s) | Fs]

¢
= dw(s) +

1

σ
(µ− (p(s)h+ (1− p(s))l)) ds,

is the increment of a standard Wiener process under P , relative to the filtration
F.

Proof.
See Liptser and Shiryaev, 2001 p 317 and for a more intuitive derivation see

Bolton and Harris (1999).
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Changes in beliefs are increasing in the wedge h − l: When the two average
growth rates differ significantly more information can be obtained and the investor
can revise her beliefs more quickly. Conversely, when the quality of the signal is
poor (high value of σ) or when the investor is almost certain of the value of µ (p
close to 0 or 1), little information can be extracted and therefore beliefs do not
change much. In addition, p is a martingale under P relative to F so on average,
the investor’s beliefs does not change1.
Let Ph and Pl be the probability measures under which the process V is a

geometric Brownian motion with constant drift µ = h and µ = l, respectively.
For µ ∈ {l, h}, define the processes γp,µ and ξp,µ by

γp,µ(t) =
µ− (p(t)h+ (1− p(t))l)

σ

and

ξp,µ(t) = exp

µ
−
Z t

0

γp,µ(s)dw(s)−
1

2

Z t

0

γ2p,µ(s)ds

¶
.

Note that since γp,µ is a bounded process, ξp,µ is a martingale under F (Karatzas
and Shreve, 1998, p. 17). Moreover, ξp,µ is the density process of the Radon-
Nikodym derivative of P with respect to Pµ, i.e.,

ξp,µ(t) =
dP (t)

dPµ(t)
.

It can be shown that when µ = h, then ξp,h(t) =
p0
p(t)

and when µ = l, then

ξp,l(t) =
1−p0
1−p(t) .

Define φp,l(t) =
p(t)
1−p(t) and φp,h(t) =

1−p(t)
p(t)

. One can be easily check that under
Ph and Pl respectively

dφp,h(t) = −h− l

σ
φp,h(t)dw(t)

dφp,l(t) =
h− l

σ
φp,l(t)dw(t).

Hence, φp,h and φp,l are geometric Brownian motions under probability measures
Ph and Pl respectively and thus convenient to deal with. Finally, in the sequel
EP [. | Ft] denotes the conditional expectation with respect to beliefs P.We start
the analysis by examining the benchmark case of a non-updating investor who
never changes her initial beliefs.

1This is due to the fact that the unobservable drift is assumed to be constant.
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1.2. Benchmark case: non-updating investor

1.2.1. Complete information

This case has been studied extensively in the literature (see for instance Dixit and
Pindyck, chapter 6, p 180-185.). We briefly recall the main results. For µ ∈ {l, h},
let βµ be the positive root of the quadratic

σ2

2
x2 +

µ
µ− σ2

2

¶
x− r = 0.

Notice that βµ > 1 since r > µ.When µ is known and equal to l (respectively h),
then p = 0 (respectively p = 1). The option value is given by

F µ(V ) = AµV
βµ for V ≤ V ∗µ

= V − I for V ≥ V ∗µ ,

with

V ∗µ =
βµ

βµ − 1
I

and
Aµ =

1

βµ
(V ∗µ )

1−βµ .

We now look at the non-updating investor problem.

1.2.2. Non-updating investor problem

The investor chooses not to use arriving information: Changes in beliefs are simply
equal to 0. At time 0, given the observation of the value of the project V and
some initial beliefs p0, an investor has to choose an optimal timing in order to
maximize the benefits of investing, i.e.,

FNU(V0, p0) = sup
τ≥0

EP
£
(V (τ)− I)e−r(τ−t) | F0

¤
s.t. dV (s) = V (s) ((p0h+ (1− p0)l)ds+ σdwp0(s))

dp(s) = 0

V (0) = V0 and p(0) = p0.
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To simplify notation, we drop the index 0 and write p instead of p0 in the sequel.

For V remaining inside the inaction region, The Hamilton-Jacobi-Bellman
(HJB) can be written

rFNU(V, p)dt = EP [dFNU(V, p) | F0] .

Using Ito lemma leads to the following expression for the HJB

rFNU(V, p) = V (ph+ (1− p)l)F 0
NU(V, p) +

σ2

2
V 2F 00

NU(V, p).

This equation is similar to the one obtained under complete information when the
average growth rate µ is known. The non-updating investor simply replaces the
unknown value of µ by its average ph + (1 − p)l once for good. Using the initial
condition FNU(0, p) = 0, the solution of the HJB equation is

FNU(V, p) = A(p)V β(p),

where β(p) is the positive root of the quadratic

σ2

2
x2 +

µ
ph+ (1− p)l − σ2

2

¶
x− r = 0.

As in the complete information case, the optimal investment threshold VNU(p) is
given by

VNU(p) =
β(p)

β(p)− 1I,

and it follows that

FNU(V, p) = (VNU(p)− I)

µ
V

VNU(p)

¶β(p)

.

We now study the effect of initial optimism on the investment decision. We
have the following proposition.

Proposition 1. The more (initially) optimistic the investor is, the higher is the
investment threshold.
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Proof.
See appendix 1.
The more optimistic, the higher the average return on the project ph+(1−p)l.

The cost of the investment decreases by a factor e−rt whereas on average the payoff
of investing is reduced by e−(r−(ph+(1−p)l))t. Optimism provides incentive to wait.

To conclude the analysis of the non-updating investor problem, we look at the
average time until investment. Since p is maintained fixed, starting in state (V, p),
the average time to investment TNU is simply given by

TNU(V, p) =
ln
³
VNU (p)

V

´
ph+ (1− p)l − σ2

2

for ph+ (1− p)l >
σ2

2
(1.2)

= ∞ otherwise.

Optimism has two opposing effects on the timing of investment. On the one
hand, optimism increases the effective average growth rate of the project, which
speeds up investment (direct effect). On the other hand, optimism raises the
optimal investment threshold thus delaying investment (indirect effect). For ph+
(1− p)l > σ2

2
, totalling differentiating relationship (1.2) with respect to p yields

∂TNU(V, p)

∂p
=

1

ph+ (1− p)l − σ2

2

1

VNU(p)

∂VNU(p)

∂p| {z }
indirect effect

− (h− l)
ln
³
VNU (p)

V

´
¡
ph+ (1− p)l − σ2

2

¢2| {z }
direct effect

.

We see that when V is small, the direct effect dominates and conversely, when V
is close to VNU(p) the indirect effect dominates.

In the following section, we describe the Bayesian investor’s program and com-
pare the optimal investment frontier with the one obtained in the non-updating
investor in order to determine the role of information in the irreversible investment
decisions.

1.3. Bayesian investor’s problem

At time t = 0, the Bayesian investor’s program is

F (V, p) = sup
τ≥0

EP
£
(V (τ)− I)e−r(τ−t) | Ft

¤
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s.t. dV (s) = V (s) ((p(s)h+ (1− p(s))l)ds+ σdwp(s))

dp(s) =
h− l

σ
p(s)(1− p(s))dwp(s)

V (t) = V and p(t) = p.

Note that wp is a standard Brownian motion under P . Details of the existence of
the solution can be found in Øksendal (2000), Chapter 10. The supremum F is
the least superharmonic majorant of the reward function V − I. In appendix 1
we prove that the inaction region IR of this problem can be written

IR = {(t, V, p); 0 < V < V ∗(p)},

where V ∗ is the optimal investment frontier to be characterized in the sequel.
Hence, for any (V, p) inside the inaction region IR, the Hamilton-Jacobi-Bellman
(HJB) is

rF (V, p)dt = EP [dF (V, p) | Ft] .

Using Ito lemma leads to the following expression for the HJB

rF (V, p) = V (ph+ (1− p)l)F1(V, p) +
σ2

2
V 2F11(V, p) (1.3)

+V (h− l)p(1− p)F12(V, p) +
1

2

µ
h− l

σ

¶2
(p(1− p))2 F22(V, p).

The initial condition is F (0, p) = 0 for all p since V = 0 is an absorbent state and
the value-matching and smooth pasting (free boundary) conditions respectively
are

F (V ∗(p), p) = V ∗(p)− I

∇F (V ∗(p), p) = (1, 0),

where V ∗(p) denotes the investment trigger value given the investor’s beliefs p and
∇F = (F1, F2) is the gradient of F.

1.3.1. Interpretation of the value function

As usual, the return of investing an amount F (V, p) into a safe asset with constant
rate of return r must be equal to the expected capital gain from waiting (since
no dividend is paid) governed by the changes in the value of the project and the
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beliefs. The two first terms on the right hand side of relationship (1.3) are the
usual ones (given a fixed value for p) and represent the expected change in the
option value as V varies. Appearing in the last term, 1

2

¡
h−l
σ

¢2
(p(1− p))2 is a

measure of informativeness, and 1
r
F22(V, p) is the shadow price of information.

The gain from waiting is 1
2r

¡
h−l
σ

¢2
(p(1− p))2 F22(V, p) and represents the direct

effect of learning. In particular, if h− l is small, σ is large or p is close to 0 or 1,
the gain from waiting is small. On the contrary, the informativeness is maximal
when p = 1

2
, i.e., when the investor is very confused about the true value of the

drift µ. The median term V (h− l)p(1−p)F12(V, p) in relationship (1.3) represents
the effects of change of beliefs on the marginal value of the option due to the
correlation between the value of the project and the beliefs. The sign of the cross
derivative F12 is somewhat difficult to predict. Nevertheless, when the drift µ is
known, the marginal value of the option is decreasing in µ. When p increases, this
somehow corresponds to a rise in the perceived value of the drift. This intuitive
reasoning leads us to conjecture that F12 must be negative.
It appears that the magnitude of the uncertainty σ now plays an ambiguous

role. On the one hand, an increase in σ rises the option value as in the classical
case. On the other hand, when σ increases, less information can be extracted from
the observations of V and therefore, it lowers the option value by decreasing the
amount of information contained in the signal.

1.3.2. Properties of the option value and the investment trigger frontier

In this paragraph, we derive some useful properties about the option value F and
the optimal investment trigger frontier V ∗. The proofs are reported in appendix
2.

Property 1: F is strictly increasing and convex in its first argument. It
follows that given p, V ∗(p) is uniquely defined.

Property 2: If at some date t, p0(t) > p(t), then for all s ≥ t, p0(s) ≥ p(s):
If one investor is more optimistic than a second investor, she will always remain
more optimistic.

Property 3: For all V ≥ 0 and p ∈ [0, 1], F (V, p) ≤ pF (V, 0) + (1 −
p)F (V, 1).

Property 4: F is non decreasing and strictly convex in its second argument;
Optimism increases the option value and information is always valuable.
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Property 5: The optimal investment trigger frontier V ∗ is non decreasing
in p. An optimistic investor requires a higher trigger value as she thinks that her
option value of waiting is higher.

The key element to derive these properties is to use a change of probability
(beliefs) using the Radon-Nikodym theorem (see for instance Cuoco and Zapatero
(2000)) to rewrite the option value F as follows

F (V0, p0) = sup
τ≥0

1

ξp,l(0)
El
£
ξp,l(τ)(V (τ)− I)e−rτ | F0

¤
s.t. dV (t) = V (t) (ldt+ σdw(t))

ξp,l(t)

ξp,l(0)
= 1− p0 + p0 exp

Ã
−1
2

µ
h− l

σ

¶2
t+

h− l

σ
w(t)

!
.

In the next paragraph, we compare the investment strategy of a Bayesian in-
vestor who uses the arrival of information to update her beliefs with the investment
strategy of a non-updating investor whose beliefs do not evolve over the course of
time.

1.3.3. Bayesian investor versus non-updating investor

The non-updating investor optimal strategy is used as a benchmark to study the
role of information in investment decision. We have the following proposition.

Proposition 2. The investment trigger of the Bayesian-investor is higher than
the investment trigger of the non-updating investor, i.e.,

V ∗(p) < VNU(p) for all p in (0, 1) , and

V ∗(0) = VNU(0) and V ∗(1) = VNU(1).

In particular, this gives us an upper bound for the optimal investment frontier of
the Bayesian firm.

Proof.
See appendix 3.

Proposition 3. states that the optimal investment of a non-updating investor
lies above the Bayesian investor’s one. One natural concern is then: is there any
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monotonic relationship between the two option values? Unfortunately, the answer
is negative. Numerical simulations (not displayed here) show that when the value
of the project V is small, the Bayesian investor has a higher option value than
the non-updating investor for any given p; the opposite result holds when V is
close to the investment trigger of the Bayesian firm. The non-updating investor
gives up the opportunity to learn about the characteristics of the project. In com-
pensation, she requires a higher premium over the cost of investing to undertake
an irreversible commitment. In some sense, this result reinforces Bernanke’s bad
news principle. Moreover, this result is the mirror of the one obtained by Venezia
(1983) who considers a firm having an option (put) to sell an asset and shows that
the Bayesian firm has more incentive to wait than the non-updating firm.

1.4. Average time until investment

In this paragraph, we aim at studying the effects of optimism on the timing of
investment. On the one hand, we have already seen that optimistic agents require
a higher investment trigger value since they think their option is higher. On
the other hand, a higher p increases the (perceived) value of the growth rate
of the project, which enhances the travelling speed of the stochastic process V
accelerating the decision of investing. Hence, we are interested in answering the
following question: Do optimistic agents tend to rush or to delay investment on
average? Given the initial value of a couple (V, p), let T (V, p) denote the average
time a Bayesian investor may expect to wait until investment. In order to ensure
existence of T for all p in [0, 1], the condition l − σ2

2
> 0 is needed. We now

characterize the average time T .

Proposition 3. The average time T until investment satisfies the following Hamil-
ton Jacobi Bellman equation

−1 = V (ph+ (1− p)l)T1(V, p) +
σ2

2
V 2T11(V, p)

+V (h− l)p(1− p)T12(V, p) +
1

2

µ
h− l

σ

¶2
(p(1− p))2 T22(V, p),

with the initial condition

lim
V→0

T (V, p) =∞, for all p ∈ [0, 1] ,
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and boundary condition

T (V ∗(p), p) = 0 for all p ∈ [0, 1] .

In addition,

T (V, 1) =
ln
³
V ∗(1)
V

´
h− σ2

2

and T (V, 0) =
ln
³
V ∗(0)
V

´
l − σ2

2

.

Proof. The central idea of the proof relies on the construction of an appropriate
martingale in order to use the Optional Stopping Theorem. A complete proof is
provided in appendix 4.

Another interesting issue is: How long on average does a Bayesian investor wait
until investing when the project is bad, i.e., µ = l (respectively good, µ = h)?
Using the law of conditional expectations we have

E [τ∗] = pE [τ ∗ | µ = h] + (1− p)E [τ ∗ | µ = l] .

Given the fact that µ ∈ {l, h}, the law of motion of V is

dV (t) = V (t) (µdt+ σdw(t)) ,

and the law of motion of the beliefs p is

dp(t) =
h− l

σ
p(t)(1− p(t))

µ
ε
h− l

σ
p
1−ε
2 (t)(1− p(t))

1+ε
2 + dw(t)

¶
,

where ε = 1 if µ = h and ε = −1 if µ = l. Note that the beliefs p is a submartingale
(supermartingale) if µ = l (µ = h), reflecting the fact that the Bayesian investor’s
beliefs decrease (increase) if µ = l (µ = h). Once again, using the optional
sampling theorem, it is easy to show that for µ ∈ {l, h}, given the initial condition
(V, p), the average time T µ until investment satisfies the following Hamilton Jacobi
Bellman equation

−1 = µV T µ
1 (V, p) +

σ2

2
V 2T µ

11(V, p) + ε

µ
h− l

σ

¶2
p(1− p)p

1−ε
2 (1− p)

1+ε
2 T µ

2

+V (h− l)p(1− p)Tµ
12(V, p) +

1

2

µ
h− l

σ

¶2
(p(1− p))2 T µ

22(V, p),
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with the initial condition

lim
V→0

T µ(V, p) =∞, for all p ∈ [0, 1] ,

and boundary condition

T µ(V ∗(p), p) = 0 for all p ∈ [0, 1] .

In general, it is not possible to get a closed form solution for the option value
and the average time until investment. The reason is that it requires us to solve a
second order parabolic partial differential equation with a free boundary condition.
Hence, we have to rely on numerical methods. However, it turns out that for the
special case where l+h = σ2, closed forms solutions can be obtained. This special
case is presented in the next session.

2. A Tractable Case: h+ l = σ2

Although the condition h+ l = σ2 is restrictive and in particular prevents us from
doing some comparative statics over σ, it allows us to explicitly determine the
optimal investment frontier and provide a representation for the option value. We
start with the following proposition.

Proposition 4. The option value is given by

F (V, p) = (1− p)A(
p

1− p
V −

h−l
σ2 )V βl for V ≤ V ∗(p)

= V − I for V ≥ V ∗(p),

and the optimal investment frontier is given by

V ∗(p) = (1 +
1

pβh + (1− p)βl − 1
)I.

In addition, the function A is defined on R++ and is given by

A(x) =
1

1− S(x)

µx(1− S(x))

S(x)

¶− σ2

h−l
− I

µx(1− S(x))

S(x)

¶σ2βl
h−l
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lim
x−→0

A(x) = Al

lim
x−→∞

A(x)

x
= Ah,

where the function S is defined on R++ into [0, 1] as the inverse function of

p 7−→ p

1− p
(V ∗(p))−

h−l
σ2 .

Proof.
See appendix 5.

The closed form solution obtained for the optimal investment frontier allows
us to draw a direct comparison between the Bayesian and non-updating investor
optimal strategies. Recall that in the non-updating investor’s case, the optimal
investment frontier is given by

VNU(p) =

µ
1 +

1

β(p)− 1
¶
I.

Since β(.) is a convex function (see appendix 1), it follows that β(p) ≤ pβh+(1−
p)βl and therefore we have

V ∗(p) ≤ VNU(p).

Simple algebra also reveals that V ∗ is convex in p so the more optimistic the
investor is getting the more she wants to wait. We conclude this section by
examining the average time until investment which is only defined for p in

£
1
2
, 1
¤
.

Proposition 5. Starting at (V, p) in the inaction region IR and p ≥ 1
2
, the

average time T until investment is given by

T (V, p) =

Ã
1− p

l − σ2

2

+
p

h− σ2

2

!
ln

V ∗(S( p
1−pV

−h−l
σ2 )

V

 ,

Proof.
See appendix 5.

In appendix 5, we also show that

p 7−→ p

1− p
(V ∗(p))−

h−l
σ2 ,

18



is a strictly increasing function, which implies that its inverse S is also increasing.
Moreover, the functions p 7−→ p

1−p and V ∗ are also increasing. It follows that
given V , T is an increasing function of p. Optimism in this case unambiguously
delays investment.

The next section is devoted to some numerical simulations showing the impact
of uncertainty and optimism on the optimal investment frontier and the average
time until investment.

3. Numerical Simulations

We start this section by presenting the methodology used for the numerical sim-
ulations. We actually use two distinct methods.

3.1. Method 1: binomial tree

The first method and easier to implement is a binomial tree approach. It relies
on the following representation for the option value

F (V0, p0) = sup
τ≥0

El

"Ã
1− p0 + p0

µ
V (τ)

V

¶h−l
σ2

e−aτ
!
(V (τ)− I)e−rτ | F0

#
,

where a = h−l
σ2

³
h+l
2
− σ2

2

´
> 0 and V (t) = V0 exp

³
(l − σ2

2
)t+ σw(t)

´
. We ap-

proximate the infinite horizon call option with a finite horizon call option with
terminal date T . Then, for N a positive integer, one period length is ∆t = T

N
.

The process V can be approximated by a Bernoulli process such that, given V (t),
we have

V (t+∆t) =

½
uV (t) with probability q
dV (t) with probability 1− q

with u = eσ
√
∆t, d = u−1 and q = el

√
∆t−d
u−d .

Beliefs p0 only appears as a parameter. This method only works for computing
the option value F and the optimal trigger investment frontier V ∗. This latter is
obtained by a bisection method. Given p0, we know that V ∗(p0) is in the interval
[V ∗(0), V ∗(1)]. We compute the option value for the midpoint V 1

m = 1
2
(V ∗(0) +

V ∗(1)), i.e., F (V 1
m, p0). If F (V

1
m, p0) > V 1

m − I, V ∗(p0) must be in [V ∗(0), V 1
m],

and we continue the procedure with a new midpoint V 2
m = 1

2
(V ∗(0) + V 1

m). If
F (V 1

m, p0) < V 1
m−I, V ∗(p0) must be in [V 1

m, V
∗(1)], and we continue the procedure
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with a new midpoint V 2
m =

1
2
(V 1

m+V ∗(1)). For an arbitrary small tolerance ε > 0,
we stop the algorithm after N iterations when

¯̄
V N
m − V N−1

m

¯̄ ≤ ε. The second
method is a finite difference approach, harder to implement but it provides much
more flexibility and in particular can be applied to compute the expected time to
investment.

3.2. Method 2: finite differences

For (V, p) in [0, V ∗(1)]× [0, 1], we discretize the HJB equation choosing a NV ×Np

grid. Partial derivatives are approximated by (central) finite difference equations.
A particular point of the grid is (V, p) with V = i∆V and p = j∆p for (i, j) ∈
[1, NV ] × [1, Np]. Then, by re-indexation k = (i − 1) × Np + j, we convert the
problem into solving a N = NV ×Np linear system of the type

AF = B,

where A is a N×N square matrix, B is a N×1 vector incorporating the boundary
conditions F (0, p), F (V, 0), F (V, 1) and F (V ∗(1), p) = V ∗(1)−I. The free bound-
ary condition is dealt with by using successive over-relaxations (SOR), which
means that at each iteration, we check that the value obtained for the option
value is above the corresponding payoff of exerting the option. If not, the com-
puted value is replaced by the corresponding payoff. One drawback with this
method is that it requires to solve a linear system whose size grows very quickly
with the degree of precision desired. The main advantage is that we obtain all
the values for F and can be implemented for elliptic systems, i.e. when dealing
with a two dimensional Wiener process.

Tables 1 is obtained using the binomial method and we get an acceptable
precision for T = 50 and N = 10, 000 if we compare the computed values and
the exact values of the investment trigger when p = 0 and p = 1. It displays the
value of the optimal investment frontier for both a Bayesian and non-updating
investors for different values of the beliefs p and uncertainty σ. We also compute
∆ = VNU−V ∗

V ∗ the relative difference in investment triggers between the two types
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of investors for some given beliefs p.

TABLE 1
Optimal trigger investment frontiers

σ2 0.1 0.3 0.8
VNU V ∗ ∆ VNU V ∗ ∆ VNU V ∗ ∆

p
0 1.564 1.564 0 1.871 1.871 0 2.457 2.457 0
0.1 1.654 1.604 0.031 1.972 1.923 0.025 2.591 2.572 0.007
0.2 1.761 1.667 0.056 2.091 2.012 0.040 2.748 2.706 0.015
0.3 1.888 1.748 0.080 2.237 2.116 0.055 2.931 2.865 0.023
0.4 2.041 1.851 0.102 2.402 2.247 0.069 3.15 3.057 0.030
0.5 2.227 2.001 0.113 2.608 2.404 0.085 3.414 3.293 0.037
0.6 2.456 2.209 0.112 2.863 2.614 0.095 3.739 3.590 0.042
0.7 2.746 2.474 0.110 3.183 2.902 0.097 4.147 3.975 0.043
0.8 3.120 2.820 0.107 3.600 3.300 0.093 4.675 4.495 0.040
0.9 3.621 3.377 0.072 4.156 3.890 0.068 5.380 5.235 0.028
1 4.325 4.325 0 4.940 4.940 0 6.372 6.372 0

r = 0.8, h = 0.6, l = 0.2, I = 1.

Table 1 shows that both V ∗ and VNU are convex in p. When the investor
is fairly optimistic, a change in beliefs has a high impact on the optimal trigger
investment value. In addition, an increase in uncertainty σ delays investment:
For all values of the beliefs p, both V ∗ and VNU rise and the relative difference
∆ between the two thresholds shrinks. When σ is large, the signal is not very
informative and the investor has a more cautious attitude: She waits more and for
any given beliefs p, her optimal trigger investment value is closer to the one of the
non-updating investor. The relative difference ∆ measures the effect of learning
on the irreversible investment decision. We see that the effect is maximum for p
within the range [0.5, 0.7] - this is due to the convexity of the optimal investment
frontiers -, and rather small. Regarding the last point, remember that the payoffs
of the option only depend on the value of the project and therefore, the impact
of the beliefs is of second order.
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TABLE 2
Average times until investment T ∗, TNU

V = 0.49
p 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T ∗ 26.83 25.16 23.31 21.33 19.25 16.81 14.30 12.04 9.75 7.43 5.14
TNU 26.83 15.49 11.18 8.93 7.58 6.70 6.09 5.68 5.40 5.22 5.14

V = 1.71
p 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T ∗ 1.77 2.35 2.86 3.23 3.55 3.74 3.80 3.69 3.42 3.00 2.35
TNU 1.77 1.57 1.54 1.56 1.61 1.68 1.77 1.88 2.01 2.16 2.35

V = 2.83
p 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T ∗ 0 0 0 0 0 0 0 0.27 0.82 1.17 1.23
TNU 0 0 0 0 0 0 0.03 0.35 0.64 0.93 1.23

r = 0.8, h = 0.6, l = 0.2, σ2 = 0.3, I = 1

Table 2 reveals that optimism has different effects on the non-updating and the
Bayesian investors’ average times until investment. When V is small, TNU(V, .) is
decreasing, then becomes U shape as V rises and finally when V is high enough
TNU(V, .) is non-decreasing, possibly flat (and equal to zero) for small values of p
When V is small, T ∗(V, .) is decreasing, then becomes hump shape as V rises and
ultimately when V is high enough T ∗(V, .) is non-decreasing, possibly flat (and
equal to zero) for small values of p. We notice that unless V is very close to the
investment trigger frontier, the average until investment of the Bayesian investor
is greater than the one of the non-updating investor.
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4. Conclusion

We used a very simple model based on the work of McDonald and Siegel (1986)
to explore the implications of incomplete information on irreversible investment
decisions. Such a framework applies to many real life investment opportunities.
Observing the realizations of the project over time provides some information
about the true value of the average growth rate of the project and then gives
incentives to wait to learn about the true characteristics of the project. The role
of uncertainty is twofold. On the one hand, more uncertainty raises the option
value. On the other hand, more uncertainty reduces the quality of the information
received. Optimistic agents have a higher option value to wait and therefore,
choose to postpone their investment. Taking as a benchmark an investor who does
not update her beliefs, we prove that using information accelerates the decision to
invest measured in terms of investment threshold. An investor who does not use
information requires a higher premium over the cost of investing in order to accept
an irreversible investment commitment. Finally, numerical simulations show that
beliefs have different effects on the average time until investment of the Bayesian
and non-updating investors. Unless, the value of the project is very close to the
investment trigger frontier, the average time of the Bayesian investor is greater
than the one of the non-updating investor. A possible extension of the paper will
be to allow the investor to have access to an additional and costly signal. This is
left for future research.
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5. Appendix

5.1. Appendix 1

Inaction Region. We want to show that given p0, if V0 is in IR, thenW0 < V0
is also in IR. Assume V0 is in IR, then F (V0, p0) > V0− I. Let τV0 be the optimal
stopping time when the process V starts at V0. Writing V (t) = V0K(t) with

K(t) = exp
³
− R t

0

¡
p(s)h+ (1− p(s))l − 1

2
σ2
¢
ds+ σwp(t)

´
, it follows that

F (W0, p0) = sup
τ≥0

EP
£
(W0K(τ)− I)e−rτ | F0

¤
≥ EP

£
(W0K(τV0)− I)e−rτV0 | F0

¤
≥ EP

·
W0

V0
(V0K(τV0)− I)e−rτV0 +

W0 − V0
V0

Ie−rτV0 | F0
¸

≥ W0

V0
F (V0, p0) +

W0 − V0
V0

EP
£
Ie−rτV0 | F0

¤
≥ W0

V0
F (V0, p0) +

W0 − V0
V0

I (since W0 < V0 and EP
£
Ie−rτV0 | F0

¤ ≤ I)

>
W0

V0
(V0 − I) +

W0 − V0
V0

I

> W0 − I, which shows that W0 is in IR.

Proof of Proposition 1. Recall that VNU(p) =
β(p)

β(p)−1I. Hence, to prove that
VNU(p) is increasing in p, it is enough to show that β(p) is decreasing in p. By
definition, β(p) satisfies

σ2

2
β
2

(p) +

µ
ph+ (1− p)l − σ2

2

¶
β(p)− r = 0.

By using the Implicit Function Theorem, it is easy to show that β(.) is a differ-
entiable function in p and totally differentiating the previous equation yields

σ2β(p)
dβ(p)

dp
+

µ
ph+ (1− p)l − σ2

2

¶
dβ(p)

dp
+ (h− l)β(p) = 0.

It follows
dβ(p)

dp

µ
r +

σ2

2
β2(p)

¶
= −(h− l)β2(p).
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We readily conclude that dβ(p)
dp

< 0 and the desired result follows. Moreover,
differentiating again with respect to p the previous relationship yields

σ2
dβ(p)

dp
+

d2β(p)

dp2

µ
r +

σ2

2
β2(p)

¶
= −2(h− l)β(p)

dβ(p)

dp
,

so
d2β(p)

dp2

µ
r +

σ2

2
β2(p)

¶
= − ¡2(h− l)β(p) + σ2

¢ dβ(p)
dp

.

We conclude that d2β(p)
dp2

> 0 or β(.) is strictly convex in p.

5.2. Appendix 2

Rewriting the option value F under the probability measure Pl by using the
Radon-Nikodym derivative theorem leads to

F (V, p) = sup
τ≥0

1

ξp,l(0)
El
£
ξp,l(τ)(V (τ)− I)e−rτ | F0

¤
.

We know that ξp,l(t) =
1−p
1−p(t) with p = p(0). Let us define φp,l(t) =

p(t)
1−p(t) and

using Ito lemma leads to

dφp,l(t) =
h− l

σ
φp,l(t)dw(t).

Hence

φp,l(t) = φp,l(0) exp

Ã
−1
2

µ
h− l

σ

¶2
t+

h− l

σ
w(t)

!
.

Thus
ξp,l(t)

ξp,l(0)
= 1− p+ p exp

Ã
−1
2

µ
h− l

σ

¶2
t+

h− l

σ
w(t)

!
.

To save notations, we set κ(t) = exp
³
−1
2

¡
h−l
σ

¢2
t+ h−l

σ
w(t)

´
. Finally,

F (V, p) = sup
τ≥0

El
£
(1− p+ pκ(τ)) (V (τ)− I)e−rτ | F0

¤
Proof of Property 1. Writing

F (V0, p0) = sup
τ≥0

El
h
(1− p0 + p0κ(τ)) (V0e

(l−σ2

2
)τ+w(τ) − I)e−rτ | F0

i
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readily shows that F is strictly increasing in V inside the inaction region. Then,
let λ be in (0, 1) and V1 and V2 two geometric Brownian motions with the same
law of motion under Pl. For p0 in [0, 1], let V 0 = λV10 + (1− λ)V20, then we have

F (V 0, p0) = sup
τ≥0

EP
£
(λV1(τ) + (1− λ)V2(τ)− I)e−rτ | F0

¤
= sup

τ≥0
El
£
(1− p0 + p0κ(τ)) ((λV1(τ) + (1− λ)V2(τ)− I)− I)e−rτ | F0

¤
≤ λsup

τ≥0

£
El (1− p0 + p0κ(τ)) (V1(τ)− I)e−rτ | F0

¤
+

(1− λ)sup
τ≥0

El
£
(1− p0 + p0κ(τ)) (V2(τ)− I)e−rτ | F0

¤
≤ λF (V10, p0) + (1− λ)F (V20, p0).

Unless we are outside the inaction region (in this case, the optimal stopping time
is zero), the inequality is actually a strict inequality since the optimal stopping
times for project 1 and for project 2 are distinct as V1 and V2 are distinct inside
the inaction region so F is strictly increasing in V. For any given p in [0, 1], the
strict convexity in V ensures that V ∗(p) is unique.
Proof of Property 2. Let p and p0 be two one-dimensional Markovian

processes following the same law of motion. If at some date θ, p0(θ) = p(θ), then
we have p0 = p for all dates s ≥ θ. It follows that if p0(0) > p(0) then p0 ≥ p for
all t ≥ τ .
Proof of Property 3.

F (V, p) = sup
τ≥0

EP
£
(V (τ)− I)e−rτ | F0

¤
= sup

τ≥0
{pEh

£
(V (τ)− I)e−rτ | F0

¤
+ (1− p)El

£
(V (τ)− I)e−rτ | F0

¤}
≤ psup

τ≥0
Eh
£
(V (τ)− I)e−rτ | F0

¤
+ (1− p)sup

τ≥0
El
£
(V (τ)− I)e−rτ | F0

¤
≤ pF (V, 1) + (1− p)F (V, 0).

Proof of Property 4.
Step 1: For all V ≥ 0, F is non-decreasing in p.

Proof. For any V ≥ 0, we want to show that if p0 ≥ p, then F (V, p0) ≥ F (V, p).
First, we prove the following lemma.

Lemma 2. If there are two projects V1 and V2 such that at time 0, V1(0) = V2(0)
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whose laws of motion are given by

dV1(t) = V1(t) (µ1(t)dt+ σdw(t))

dV2(t) = V2(t) (µ2(t)dt+ σdw(t)) ,

where µ2 ≥ µ1, then the option value G2 associated with project 2 is higher than
the option value G1 associated with project 1.

Proof. Define a new process X = V2
V1
and X(0) = 1. Using Ito lemma yields

dX(t) = X(t) (µ2(t)− µ1(t)) dt.

X is therefore a deterministic process with a non-negative mean and starting at
1. Thus, for all time t ≥ 0, X(t) ≥ 1. We conclude that V2 ≥ V1. By definition,

G2(V ) = sup
τ≥0

E
£
(V2(τ)− I)e−rτ | F0

¤
.

Since V2 ≥ V1, in particular, for all stopping time τ , we have

E
£
(V2(τ)− I)e−rτ | F0

¤ ≥ E
£
(V1(τ)− I)e−rτ | F0

¤
.

Hence,
G2(V ) ≥ G1(V ).

Now, recall that
F (V, p) = sup

τ≥0
EP

£
(V (τ)− I)e−rτ | F0

¤
s.t. dV (t) = V (t) ((p(t)h+ (1− p(t))l)dt+ σdwp(t))

dp(t) =
h− l

σ
p(t)(1− p(t))dwp(t).

The average growth rate of the project is ph+ (1− p)l. Also recall by property 1
that if at some date the beliefs p0 is greater than the beliefs p, then it will remain
greater than p at all subsequent dates. The desired result follows straightforwardly
from the previous lemma.
Step 2: For all V ≥ 0, F is strictly convex in p.
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Let λ ∈ (0, 1), (p, p0) ∈ [0, 1]2 and p00 = λp+ (1− λ)p0. Then,

F (V, p00) = sup
τ≥0

El
£
(1− p00 + p00κ(τ)) (V (τ)− I)e−rτ | F0

¤
= sup

τ≥0
El
£
(λ(1− p+ pκ(τ)) + (1− λ)(1− p0 + p0κ(τ))) (V (τ)− I)e−rτ | F0

¤
= sup

τ≥0

½
λ

1

ξp,l(0)
El
£
ξp,l(τ)(V (τ)− I)e−rτ | F0

¤
+ (1− λ)

1

ξp0,l(0)
El
£
ξp0,l(τ)(V (τ)− I)e−rτ | F0

¤¾
< λF (V, p) + (1− λ)F (V, p0),

which shows that F is strictly convex in p.

Proof of Property 5. Since for any V > 0 and p0 ≥ p, F (V, p0) ≥ F (V, p),
using the value matching condition, we have F (V ∗(p), p0) ≥ V ∗(p) − I. Thus, it
follows easily that for p0 ≥ p, V ∗(p0) ≥ V ∗(p).

5.3. Appendix 3

Proof of Proposition 2. We want show that, for p in (0, 1) when the Bayesian
firm is about to invest (τ close to 0), the value of waiting of the non-updating
firm is strictly greater. Recall that

F (V, p) = sup
τ≥0

El
£
(1− p+ pκ(τ)) (V (τ)− I)e−rτ | F0

¤
,

where κ(t) = exp
³
−1
2

¡
h−l
σ

¢2
t+ h−l

σ
w(t)

´
. Since µ = l, it is easy to see that F

can be written

F (V, p) = sup
τ≥0

El

"Ã
1− p+ p

µ
V (τ)

V

¶h−l
σ2

e−aτ
!
(V (τ)− I)e−rτ | F0

#
,

where a = h−l
σ2

³
h+l
2
− σ2

2

´
. Conversely, in the case of a non-updating investor, p is

a constant and therefore the density process ξp,l (Radon-Nikodym derivative with
respect to Pl) is equal to

ξp,l(t) = exp

Ã
−1
2
p2
µ
h− l

σ

¶2
t+ p

h− l

σ
w(t)

!
.
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Hence, the option value FNU of a non-updating investor is

FNU(V, p) = sup
τ≥0

El
£
(ξp,l(τ) (V (τ)− I) e−rτ | F0

¤
.

Again, since µ = l, FNU can be written

FNU(V, p) = sup
τ≥0

El

"Ãµ
V (τ)

V

¶ph−l
σ2

e−p
h−l
2σ2
(p(h+l)−σ2)τ

!
(V (τ)− I)e−rτ | F0

#
.

We know that no investment will be made for both firms as long as V (τ) ≤ I. In
order to show that for p in (0, 1), FNU(V, p) > F (V, p) when the Bayesian firm is
about to invest, it is enough to that for t > 0 and (t, V (t)) in the neighborhood of

(0, V ), we have
³
V (t)
V

´ph−l
σ2

e−p
h−l
2σ2
(p(h+l)−σ2)t >

µ
1− p+ p

³
V (τ)
V

´h−l
σ2

e−at
¶
. Let us

set
³
V (t)
V

´h−l
σ2

= ey and therefore we want to show that some t and y small enough

epye−p
h−l
2σ2
(p(h+l)−σ2)t > 1− p+ pey−at.

Notice that epye−p
h−l
2σ2
(p(h+l)−σ2)t = ep(y−at)ep(1−p)

h−l
2σ2

(l+l)t. Thus the first order Tay-
lor expansion of the LHS around (0, 0) is equal to

LHS(y, t) = 1 + p(y − at) + p(1− p)
h− l

2σ2
(h+ l) t+ o(y, t).

In the same way, the first order Taylor expansion of the LHS around (0, 0) is equal
to

RHS(y, t) = 1 + p(y − at) + o(y, t).

Since for p in (0, 1) , p(1− p)h−l
2σ2
(h+ l) > 0, we have

LHS(y, t) > RHS(y, t),

for t > 0 and (t, V (t)) in the neighborhood of (0, V ). It follows that if τ ∗ is
the optimal stopping time for the Bayesian firm and small enough, because Ito
processes have continuous paths, we have

El

"Ã
1− p+ p

µ
V (τ ∗)
V

¶h−l
σ2

e−aτ
∗
!
(V (τ∗)− I)e−rτ

∗ | F0
#

< El

"Ãµ
V (τ ∗)
V

¶ph−l
σ2

e−p
h−l
2σ2
(p(h+l)−σ2)τ∗

!
(V (τ ∗)− I)e−rτ

∗ | F0
#
.
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Since τ ∗ is one possible stopping time for the non-updating firm and may not be
optimal, it follows that

El

"Ãµ
V (τ ∗)
V

¶ph−l
σ2

e−p
h−l
2σ2
(p(h+l)−σ2)τ∗

!
(V (τ ∗)− I)e−rτ

∗ | F0
#
≤ FNU(V, p).

Hence, in the neighborhood of (0, V ), we have

F (V, p) < FNU(V, p).

It follows that for p in (0, 1), we must have

V ∗(p) < VNU(p),

with
V ∗(0) = VNU(0) and V ∗(1) = VNU(1).

5.4. Appendix 4

Proof of Proposition 3. We define

τ ∗ = T (V, p) = inf{t ≥ 0 : V (t) = V ∗(p(t)) | V (0) = V, p(0) = p}.
We assume that P (τ ∗ <∞) = 1. Clearly, we have T (V ∗(p), p) = 0 and T (V, p) = 0
for V > V ∗(p). One way to compute the expected time is to determine a suitable
martingaleM and exploit the following martingale property: EP [M(τ)] =M(0).
This is the central idea of the Optional Stopping Theorem. First, we briefly
check that the conditions to use the Optional Stopping Theorem are met. We
have shown that for all p in [0, 1], V ∗(p) ≤ V ∗(1). Hence (V, p) takes values into
the compact set K = [0, V ∗(1)] × [0, 1]. This means thatM is bounded on K
and thus, there is no problem to use the Optional Stopping Theorem. We look
for a martingaleM of the formM(t) =M(V (t), p(t)) + t, where M is a smooth
function satisfying the following boundary condition M(V ∗(p), p) = 0. Given the
martingale property of M, we have EP [M(τ)] = M(0) since τ ∗ is a stopping
time. Then, the boundary condition M(V ∗(p), p) = 0 implies

EP [τ ∗] = T (V, p) =M(V, p).

Notice it is well known that when µ is constant, then

E(τ ∗) =
ln
¡
V ∗
V

¢
µ− σ2

2

.
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Hence, we must have

T (V, 1) =
ln
³
V ∗(1)
V

´
h− σ2

2

and T (V, 0) =
ln
³
V ∗(0)
V

´
l − σ2

2

.

Using Ito lemma, one necessary condition forM to be a martingale is2

0 = 1 + V (ph+ (1− p)l)M1(V, p) +
σ2

2
V 2M11(V, p)

+V (h− l)p(1− p)M12(V, p) +
1

2

µ
h− l

σ

¶2
(p(1− p))2M22(V, p).

The proof is complete.

5.5. Appendix 5

Step 1: Derivation of the optimal investment frontier

Proof. We have seen that

F (V, p) = sup
τ≥0

1

ξp,l(0)
El
£
ξp,l(τ)(V (τ)− I)e−rτ | F0

¤
.

Recall that φp,l(t) =
p(t)
1−p(t) . To save notation, set φp,l = φ. Then define a new

value function H such that

H(V, φ) = (1 + φ)F (V,
φ

1 + φ
).

Now define a new stochastic process θ = φV −
h−l
σ2 . Recall that dφ(t) = h−l

σ
φ(t)dw(t),

so by Ito lemma, we obtain

dθ(t) = V −
h−l
σ2 dφ(t)− h− l

σ2
φV −

h−l
σ2
−1dV (t)− (h− l)2

σ2
φV −

h−l
σ2 dt+

1

2
(h− l)(

h− l

σ2
+ 1)θdt

=
h− l

σ
θdw(t)− h− l

σ2
θ(ldt+ σdw(t))− (h− l)2

2σ2
θdt+

1

2
(h− l)θdt

=
(h− l)

2σ2
θ
¡−2l − (h− l) + σ2

¢
dt

= 0 since h+ l = σ2.

2To be more formal, this is just imposing the infinitesimal generator ofM to be equal to 0.
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Thus θ is actually a constant process. Then, define a new value function L for the
variables (V, θ) such that

L(V, θ) = H(V, θV
h−l
σ2 ).

It follows that in the inaction region, L must satisfy the following PDE

rL(V, θ) = lV L1(V, θ) +
σ2

2
V 2L11(V, θ).

The general solution is given by

L(V, θ) = A(θ)V βl +B(θ)V δ,

where A and B are smooth functions to be determined and βl and δ are respec-
tively the positive and negative root of the quadratic

σ2

2
x2 +

µ
l − σ2

2

¶
x− r = 0.

Then, the initial condition L(0, θ) = 0 implies B = 0. Hence,

H(V, φ) = A(φV −
h−l
σ2 )V βl.

The smooth-pasting conditions for variables (V, φ) are

H(V ∗(φ), φ) = (1 + φ)(V ∗(φ)− I)

H1(V
∗(φ), φ) = (1 + φ)

H2(V
∗(φ), φ) = V ∗(φ)− I.

The conditions are

A(φV ∗(φ)−
h−l
σ2 )V ∗(φ)βl = (1 + φ)(V ∗(φ)− I)

−h− l

σ2
φV ∗(φ)−

h−l
σ2 A0(φV ∗(φ)−

h−l
σ2 )V ∗(φ)βl + βlA(φV

∗(φ)−
h−l
σ2 )V ∗(φ)βl = (1 + φ)V ∗(φ)

V ∗(φ)−
h−l
σ2 A0(φV ∗(φ)−

h−l
σ2 )V ∗(φ)βl = V ∗(φ)− I.

Eliminating the function A among the previous equations leads to

V ∗(φ) =

¡
βl(1 + φ)− h−l

σ2
φ
¢
I

(βl − 1)(1 + φ)− h−l
σ2

φ
.
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Since φ = p
1−p , we ultimately obtain

V ∗(p) = (1 +
1

βl − 1− h−l
σ2

p
)I

= (1 +
1

pβh + (1− p)βl − 1
)I.

Step 2: Existence of the inverse function S

Proof. We want to show that

(0, 1) −→ R++
Φ : p 7−→ p

1−pV
∗(p)−

h−l
σ2

is a strictly increasing function and therefore admits an inverse denoted S. It is
equivalent to show that Ψ = lnΦ is strictly increasing from −∞ to +∞. Recall
that V ∗(p) = (1 + 1

βl−1−h−l
σ2

p
)I so

Ψ(p) = ln p− ln(1− p)− h− l

σ2
ln I − h− l

σ2
ln(1 +

1

βl − 1− h−l
σ2

p
).

Differentiating with respect to p leads to

Ψ0(p) =
1

p(1− p)
−
µ
h− l

σ2

¶2
1

(βl − 1− h−l
σ2

p)(βl − h−l
σ2

p)
.

In order to show that Ψ0(p) is positive, it is enough to show that

g(p) = 2

µ
h− l

σ2

¶2
p2−h− l

σ2

µ
h− l

σ2
+ 2βl − 1

¶
p+βl(βl−1) > 0 for all p ∈ [0, 1].

Note that g(0) = βl(βl−1) > 0 and g(1) = (βl−1−h−l
σ2
)(βl−h−l

σ2
) = βh(βh−1) > 0.

Differentiating g with respect to p leads to

g0(p) = 4
µ
h− l

σ2

¶2
p− h− l

σ2

µ
h− l

σ2
+ 2βl − 1

¶
.

Thus, g0 starts decreasing until p∗ = 1
4
σ2

h−l
¡
h−l
σ2
+ 2βl − 1

¢
. Then we show that

1

4

σ2

h− l

µ
h− l

σ2
+ 2βl − 1

¶
≥ 1.
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The condition is equivalent to

2βl ≥ 3
h− l

σ2
+ 1.

Since 2βl = 1− 2l
σ2
+
q¡
1− 2l

σ2

¢2
+ 8r

σ2
, the previous condition is equivalent toµ

1− 2l
σ2

¶2
+
8r

σ2
≥
µ
3h− l

σ2

¶2
and using the equality h+ l = σ2

(h− l)2 + 8r(h+ l) ≥ (3h− l)2

which implies
8r(h+ l) ≥ 8h2 − 4hl.

This condition is met since r > h > l. Hence, on the interval [0, 1], g is decreasing
and since g(1) > 0, g is positive on [0, 1]. The desired result follows easily.

Step 3: Derivation of the Option Value

Proof. From the matching condition F (V ∗(p), p) = V ∗(p)− I, we obtain that

A(
p

1− p
V ∗(p)−

h−l
σ2 )V ∗(p)βl =

V ∗(p)− I

1− p
.

Using the inverse function S, it follows that

A(x) =
1

1− S(x)

µx(1− S(x))

S(x)

¶− σ2

h−l
− I

µx(1− S(x))

S(x)

¶σ2βl
h−l

Step 4: Derivation of the average time to invest

Proof. Define a function K such that K(V, φ) = (1 + φ)T (V, φ
1+φ
). Using the

PDE satisfied by T , it is easy to check that K must satisfy the following PDE

−(1 + φ) = lV K1(V, φ) +
σ2

2
V 2K11(V, φ)

+V (h− l)φK12(V, φ) +
1

2

µ
h− l

σ

¶2
φ2K22(V, φ).
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The general solution of this equation is given by

K(V, φ) = −
Ã

1

l − σ2

2

+
φ

h− σ2

2

!
lnV + C(φV −

h−l
σ2 ) +D(φV −

h−l
σ2 )V 1− 2l

σ2

where C and D are arbitrary smooth functions. Since 1− 2l
σ2
= h−l

σ2
, it follows that

T (V, p) = −
Ã
1− p

l − σ2

2

+
p

h− σ2

2

!
lnV +(1− p)C(

p

1− p
V −

h−l
σ2 )+ pE(

p

1− p
V −

h−l
σ2 ),

where E is an arbitrary function such that E(x) = D(x)/x. Now suppose that
when V hits a lower boundary V , then T (V , p) = 0. The function T corresponding
to our problem will be obtained by taking the limit when V goes to 0. We have
the two following conditions

C(
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Now set u = p
1−pV

−h−l
σ2 and using the inverse function S it follows for (x, u)
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For u = x, we obtain

C(x) + S(x)E(x) =
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Taking the limit when V goes to 0 yields

C(x) =
lnV ∗(S(x))

l − σ2

2

E(x) =
lnV ∗(S(x))

h− σ2

2

.

Hence,

T (V, p) =

Ã
1− p

l − σ2

2

+
p

h− σ2

2

!
ln

V ∗(S( p
1−pV

−h−l
σ2 )

V

 .

36



6. References

Abel, A., 1983, “Optimal Investment under Uncertainty”, American Economic
Review, 73, 228-233.
Abel, A. and J. Eberly, 1994, “A Unified Model of Investment under Uncer-

tainty”, American Economic Review, 84, 1369-1384.
Abel, A. and J. Eberly, 1996, “Optimal Investment with Costly Reversibility”,

Review of Economic Studies, 63, 581-593.
Arrow, K., 1968, “Optimal Capital Policy with Irreversible Investment”, in

J.N. Wolfe (ed.), Value, Capital and Growth. Papers in honor of Sir John Hicks.
Edinburgh: Edinburgh University Press, 1-19.
Bernanke, B., 1983, “Irreversibility, Uncertainty and Cyclical Investment”,

Quarterly Journal of Economics, 98, 85-106.
Bernardo, A. and B. Chowdhry, 2002, “Resources, Real Options, and Corpo-

rate Strategy”, Journal of Financial Economics, 63, 211-234.
Bolton, P. and C. Harris, 1999, “Strategic Experimentation”, Econometrica,

1999, 349-374.
Caballero, R., 1991, “On the Sign of the Investment-Uncertainty Relation-

ship”, American Economic Review, 81, 279-288.
Brennan, M.J. and E. Schwartz, 1985, “Evaluating Natural Resource”, Journal

of Business, 58, 135-157.
Cripps, M., G. Keller, and S. Rady, 2000, “Strategic Experimentation with

Public or Private Information”,Working Paper, University of Warwick, Coventry,
U.K.
Cuoco, D. and F. Zapatero, 2000, “On the Recoverability of Preferences and

Beliefs”, Review of Financial Studies, 13, 417-431.
Cukierman, A., 1980, “The Effects of Uncertainty on Investment under Risk

Neutrality with Endogenous Information”, Journal of Political Economy, 88, 462-
475.
Demers, M., 1991, “Investment under Uncertainty, Irreversibility and the Ar-

rival of Information Over Time”, Review of Economic Studies, 58, 333-350.
Dixit, A. and R. Pindyck, 1994, Investment under Uncertainty, Princeton Uni-

versity Press, Princeton, N.J.
Karatzas, I. and S. Shreve, 1998, Methods of Mathematical Finance, Springer

Verlag, New York, N.Y.
Keller, G. and S. Rady, 1999, “Optimal Experimentation in a Changing Envi-

ronment”, Review of Economic Studies, 66, 475-507.

37



Keller, G. and S. Rady, 2000, “Market Experimentation in a Dynamic Differentiated-
Goods Duopoly”, Working Paper, Munchen University, Germany.
Jorgenson, D., 1963, “Capital Theory and Investment Behavior”, American

Economic Review in Papers and Proceedings, 53, 247-259.
Liptser, R. and A. Shiryaev, 2000, Statistics of Random Processes I, 2nd Edi-

tion, Springer Verlag, New York, N.Y.
McDonald, R. and D. Siegel, 1986, “The Value of Waiting to Invest”, Quarterly

Journal of Economics, 101, 707-728.
Moscarini, G. and L. Smith, 2001, “The Optimal Level of Experimentation”,

Econometrica, 69, 1629-1644.
Øksendal, B., 2000, Stochastic Differential Equations: An Introduction with

Applications, Springer Verlag, New York, N.Y.
Sarkar, S., 2002, “On the Investment-Uncertainty Relationship in a real Op-

tions Model”, Journal of Economic Dynamics and Control, 24, 219-225
Venezia, I., 1983, “A Bayesian Approach to the Optimal Growth Period Prob-

lem”, Journal of Finance, 38, 237-246.

38



Tables

TABLE 1
Optimal trigger investment frontiers

σ2 0.1 0.3 0.8
VNU V ∗ ∆ VNU V ∗ ∆ VNU V ∗ ∆

p
0 1.564 1.564 0 1.871 1.871 0 2.457 2.457 0
0.1 1.654 1.604 0.031 1.972 1.923 0.025 2.591 2.572 0.007
0.2 1.761 1.667 0.056 2.091 2.012 0.040 2.748 2.706 0.015
0.3 1.888 1.748 0.080 2.237 2.116 0.055 2.931 2.865 0.023
0.4 2.041 1.851 0.102 2.402 2.247 0.069 3.15 3.057 0.030
0.5 2.227 2.001 0.113 2.608 2.404 0.085 3.414 3.293 0.037
0.6 2.456 2.209 0.112 2.863 2.614 0.095 3.739 3.590 0.042
0.7 2.746 2.474 0.110 3.183 2.902 0.097 4.147 3.975 0.043
0.8 3.120 2.820 0.107 3.600 3.300 0.093 4.675 4.495 0.040
0.9 3.621 3.377 0.072 4.156 3.890 0.068 5.380 5.235 0.028
1 4.325 4.325 0 4.940 4.940 0 6.372 6.372 0

r = 0.8, h = 0.6, l = 0.2, I = 1.
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TABLE 2
Average times until investment T ∗, TNU

V = 0.49
p 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T ∗ 26.83 25.16 23.31 21.33 19.25 16.81 14.30 12.04 9.75 7.43 5.14
TNU 26.83 15.49 11.18 8.93 7.58 6.70 6.09 5.68 5.40 5.22 5.14

V = 1.71
p 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T ∗ 1.77 2.35 2.86 3.23 3.55 3.74 3.80 3.69 3.42 3.00 2.35
TNU 1.77 1.57 1.54 1.56 1.61 1.68 1.77 1.88 2.01 2.16 2.35

V = 2.83
p 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T ∗ 0 0 0 0 0 0 0 0.27 0.82 1.17 1.23
TNU 0 0 0 0 0 0 0.03 0.35 0.64 0.93 1.23

r = 0.8, h = 0.6, l = 0.2, σ2 = 0.3, I = 1
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Footnotes

1. This is due to the fact that the unobservable drift is assumed to be constant.

2. To be more formal, this is just imposing the infinitesimal generator ofM to
be equal to 0.
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