
Open Source Software: A New Approach to Software
Development

Michele Biavati, Instituto Tecnologico Autonomo de Mexico

Abstract

The productions of opens source software can be considered an example in which not only

monetary and selfish motivations lead people’s behavior. Beside the possibility of signaling one’s

own abilities offered by this new production system, altruism and satisfaction derived by belonging

in the Open Source Community constitute a fundamental aspect in programmer's motivations.

The particular motivations of agents and the rewards mechanism (both intrinsic and monetary) are

such that programmers are very efficiently organized in a multidimensional network that includes

not only programmers, but also user and tester, and often these roles interchanges. At a close view

seems also that this organization is also able to produce software that seems of better quality that

the proprietary one.

The presence in the scenario of commercial companies that make profit with Linux plus the

networks externalities that Open Source Software create are other two important keys to

understand the success and the diffusion of the Linux operating system.

Moreover, organisational arrangements constitute an essential part of the development models

followed inside technological paradigms. I specifically analyzed the different development’s

management systems that characterize Microsoft and Linux production’s organization. Hierarchy

and decentralisation constitute different, although in most occasions complementary, kinds of

organisational settings. Hierarchical organisations are based on a top-down approach to

management: information (in the form of “commands”) flows down the hierarchical chain to those

subordinated, assigning them to different tasks. In the case of decentralisation, semi-independent

units work in a more autonomous way (albeit subject to a certain hierarchical control in most

occasions, that tries to co-ordinate the activities of the independent productive “cells”).

Through decentralisation, it is easier to determine the output for each of the working units. This

makes management easier (in a sense, the advantages of decentralisation are similar to those of

modularity: it becomes easier to determine what is going wrong and where) and facilitate the linking

of rewards to performance, providing incentives for workers to increase their effort, and therefore

helping to solve the typical problems of principal-agent found in most firms.

Through decentralisation “informational responsibilities” are more efficiently distributed across

the firm. The manager is, to a certain extent, relieved of the burden of coordinating the productive

process to its finest degree (for what an enormous amount of information is required for this).

Workers have a greater opportunity to take part in the decision-making process in the areas in

which they are most knowledgeable.

 1

In the same way, process innovation is favoured: there is no need for redesigning enormous

and very complex production processes in order to introduce innovations. Small changes in the

operating units can increase their performance without affecting the rest of the productive system.

Workers, who are better informed about what they are doing, can introduce small-scale innovations.

The human capital of the whole organisation is exploited in a more efficient and comprehensive

way.

Communication and control of activities are deeply linked to the hierarchical or decentralised

nature of an organisation. Management consists of a transmission of information that tries to

influence an actor so that he/she performs a task in a way that is considered to be more efficient,

given the objectives of the organisation. If we consider this definition of management, we could say

that in Linux there is no management at all. In the case of Linux the only flow of information that

goes top-down is the release of new versions as a set of “information”. The feedback that the centre

obtains makes up the actual components that will be integrated into the next release. Moreover, the

programmers involved in Open Source explicitly use comparisons about the evolution of

alternatives in terms of selecting the best and weeding out of the worst.

In the case of more formal management, there are decisions at the top which are transmitted to

the bottom and then feed back from the bottom to the top, reporting on the results of the activities

previously “ordered”. The need for information processing will be stronger in this kind of

arrangement: the manager needs to determine what is needed and then ask his/her subordinates to

do it. Then the manager obtains information about the results. In contrast, in the first case Open

Source, the “manager” just tells the community what the situation is and the community gives

him/her the potential answers from which they should choose.

The structure that we could more clearly associate to Linux has, therefore, some important

advantages in the dynamic and complex world of software development. First, it becomes easier to

avoid organisational inertia and adapt more flexibly to changes in the environment. Decisions come

from the bottom–where more knowledge will be accumulated–that present a more accurate

perception (and conscience of the importance) of potential future alterations in the competitive,

technical and social setting.

Another fundamental aspect analyzed is the hybrid market structure of the Open Source

products. Although the basic software is freely available to anyone, there exist companies and

software houses that base their activities on the commercialization of Open Source software; more

specifically, they sell a “package” that, in addition to the free software, includes consultancy,

manuals, maintenance, updating and training. This business model is widely accepted in open

source communities and it is characterized by a detailed regulation presenting innovative legal

solutions which address the relation between free and on-payment services.

Besides playing an important role in the diffusion process, those companies simultaneously

solve two problems: first they secure for potential adopters a wide range of complementary

services, which are considered fundamental for reliability and usability of the software. Second,

they provide monetary incentives for the development of “non-interesting” activities, which do not fit

the typical motivations of the open source community. Moreover, distribution through the market

 2

can thus reduce other (later or perceived) costs, even if it is cost to obtain the software package. In

addition, it gives legitimacy as a “real” alternative

INTRODUCTION

In recent years a new means of software development has appeared in the computer industry.

This new approach, known as open source movement, is based on a crucial right for all to read and

access the software’s source code (freely available on the internet) and the opportunity to modify

and develop the programs and then redistribute new versions. The idea behind this approach can

be described in this way: “when programmers can read, redistribute and modify the source code for

a piece of software, the software evolves. People improve it, people adapt it, people fix bugs. And

this can happen at a speed that, if one is used to the slow pace of conventional software

development, seems astonishing.”1

Open source movement can be considered as a new innovation that is in opposition to the

traditional property rights approach. It can be defined as a culture of individuals devoted to the free

development and distribution of software. These individuals believe in mutual help and the

advantages of sharing software code.

Open source software code constitutes a public good, and, on first inspection, its production

seems paradoxical: it is a public good provided by volunteers that seems to be of better quality than

commercial software. Moreover, it is free in two aspects: it has no direct cost to the user and gives

the user the freedom to modify the program.

It is clear that once produced, those who have not contributed to their production can freely use

these goods. In particular, open source code is a non-rival good in terms of consumption. Because

it seems profitable to utilize the contributions of others, obtaining benefits without fronting any costs,

the free rider problem should arise. But, if everyone were to follow this argument, the software

would not be produced. Analyzing the motivation that drives people to write and provide free source

code will explain the reason why this does not happen in practice.

In practice what is happening is that the presence of a few highly motivated subjects allows the

initial phase of supply the collective good to pass, where cooperation overcomes benefits. After this

phase, more and more agents realize that contribution is profitable for more and more agents. All

this sets in motion a virtuous circle that enables the phenomenon to be self-sustained, converging

towards a new equilibrium in which all members choose to cooperate.

Here the role of strongly interested programmers is not to provide the good entirely by themselves,

but to create the necessary conditions for production to become easier. Their task is “to be the first

to cooperate”, enabling the difficult start-up phase of collective action to be overcome. This

framework very well explains the dynamics of open source projects. They originate from a small

group of subjects working for achieving a deliberate goal of giving. If the group succeeds in finding

1 This idea can be found on the web: http://www.opensource.org

 3

good solutions, the results are posted on the Internet and the project is advertised on mailing lists

and newsgroups. Contributors, in turn, decide which problem to work on.

 Open source communities are organized in a collaborative network that communicates through

the internet, avoiding any kind of barrier to the free flow of information between developers and

users. This may be the first example wherein the internet enables cooperation on a scale that

changes market dynamics.

Open source software is a certification mark. Software, in order to be denominate open source,

has to respect the following rules2:

• Free redistribution, without restriction or fees.

• Program must include and allow distribution in source code as well as compiled form.

• Modified and derived works have the same right of distribution.

• Integrity of the author’s source code, enabling users to distinguish between base source

(e.g. non modified) and patch files.

• No discrimination among persons or groups.

• Distribution of license follows with all redistributions.

• License must not be specific to a product (e.g. dependent or being part of a software

distribution (package)).

• License must not contaminate other software (e.g. must not demand that all other software

is also open source).

In other words, these rules give users the freedom to download the software and the source code

from the internet, to modify the program to suit their needs and to redistribute modified versions3.

More clearly, there are two senses in which Free Software is “free”: it has zero direct cost to the

user and it provides the freedom to modify the software.

LINUX

Linux is an operating system based on UNIX, the main programming language used in the

academic world. An operating system is the main interface that allows a user to communicate with

the computer and allows the computer to communicate with other computers that are connected

through a network.

Linux, one of the most recognizable of the open source projects, started when Linus Torvalds,

motivated by both his frustration with existing software and a desire to write software programs,

published his operating system and the source code on the internet, involving other people in his

2 http://www.opensource.org
3 Among the aims of this paper is not included a deep analysis of the scope of open source licensing. For an
exhaustive review of different types of licence agreements and the related literature refer to Lerner and Tirole
(2002b).

 4

project. He asked hackers to provide comments, suggestions and new ideas in regards to his

program.

The Linux project, since first introduced, has received a vast audience of people. It works

through a decentralized and scattered network of programmers, the “community of developers”.

This group of volunteers contributes to the development of Linux.

Torvalds, as the leader of the Linux project, releases different versions of the operating system.

These are freely available on the Internet. Those who are interested, having access to the source

code, can attempt to improve upon the program, test it and add new features. Due to the fact that

different users have different needs, they write programs to better suit their specific needs; each

developer determines the specifications and design of new features and functions. What made it

easy for programmers contribute to the Linux project is a fundamental characteristic of the software:

Linux is highly modular; it consists of separate programs, each of which is independent to the

others. One of these programs is the kernel - the program that directly addresses and controls the

hardware. The other modules can “communicate” with the computer through the kernel. The fact

that Linux has a modular structure is very important. This enables users to work on a small part of

the program and to submit improvements while not necessarily knowing the entire source code.

Moreover, the community can decide which parts to develop.

Any kind of improvement, correction or feedback regarding errors and bugs is submitted back

to the leader, who then decides which contributions to incorporate into the new version of the

program. The actions of the programmers are organized by the contributor’s mailing list - the

primary place for technical discussions pertaining to aspects of the development. Torvalds then

makes final decisions about which developments to include in the new version. Each version

contains a “credits file” in which the name of each contributors and which part was developed is

recorded.

Torvalds acts as “benevolent dictator” and his decisions are influenced by the opinions,

suggestions and criticisms of the community. It is important to emphasize that this group is

composed of highly competent individuals; these programmers participate because they have the

interest and the ability to do so. In making these choices, Torvalds influences the development of

the project by choosing a particular solution and asking for efforts in particular fields. He also has to

be willing to listen to suggestions for improvements as well as criticism. He plays the role of a

project leader of a global group, but one where members only participate if, and when, they have

the interest and the ability to do so. He can lead and choose but not command. Moreover, the ideas

in an Open Source project are exchanged democratically with respect to free communications but

decisions, as we have seen, are not completely democratic. However, the non-democratic decision

process is accepted due to the fact that the results are open for anyone to change.

The fact that the source code of the software is open permits the users to customize the

program in order to more efficiently satisfy their needs. This possibility not only gives much

flexibility to users, but it is essential to the development of the software: individual modifications that

are submitted back to the community allow open source software to evolve into a high quality

product and to expand its features.

 5

Linux is released at a very fast speed and reliability is achieved by external testing by the users.

Each version is associated with a different degree of stability (it depends how completely the

version has been tested and debugged). Users, depending on their interest and objectives, can

choose which versions they prefer to use. This release policy permits the rapid development and

production of high quality (in terms of stability) software.

What makes the Linux project a successful way to produce an operating system are some

internal characteristics on which Linux is based: among programmers there is a general idea that

authority comes only from competence (not from any other factors). Many of those involved in

open source software believe (Raymond 1999) that the way in which Linux is developed is a very

efficient methodology to produce software. Everyone can join the creative and democratic

community. They can contribute, test, give suggestions and provide feedbacks.

Moreover, the fact that the solutions are chosen through the consensus of highly specialized

programmers means that the best solutions are accepted for the source code. In order that he/she

not lose a consensus, the leader has to accept the decisions that are considered to be the most

right by the community. In addition, the fact that every user is a potential contributor (even if it

means alerting the community to an error) ensures that the program is tested by thousands of

users. This is a very efficient way to develop software, with extremely stable results. A large

audience tests the programs in real scenarios, correcting errors during their use and then provides

immediate feedback. This process also works for the production of entirely new modules.

New contributions are published on the web on a regular basis. They are analyzed by the

community before they become part of the newly released software. As Raymond’s (1999) claims,

when programmers are allowed to work freely on the source code of a program, exchanging files

and ideas through the internet, the software will be improved because collaboration helps to correct

errors and enables the software to adapt to different needs and hardware platforms4.

A precondition of the success of the open source projects is that it is based on the Internet. This

is because the internet provides, at very low cost, simple but reliable communication tools that are

available worldwide. This permits real time communication and helps to cut the cost of sharing

information. In fact, the infrastructure investment for taking part in the movement is almost zero.

Most of the programmers have their own computer for studying or working – some will even write

the code at work.

MOTIVATIONS

One of the first questions that arise when analyzing the open source movement is why

thousands of people volunteer their services for the production of a public good. There is a wide

range of motivations to contribute, that range from altruism and personal benefit to idealism and

monetary pay offs.

4 http://www.opensource.org

 6

The open source community mainly consists of hackers that began their involvement in Linux

because they thought it was a “cool” project. The fact that Linus Torvalds opened the development

of his software to many people was a big psychological incentive for hackers to participate.

The development of a network of users/developers corresponds with the ideology behind the

hacker culture and computer science students – universal freedom and access to information. It

concerns the rights and responsibilities of individuals with the idea that free information should be

accessible to all; it is related to “the recognition of democracy as the fundamental of modern

society, better and more liberated means of communication, and an accelerating information flow

creating a higher degree of complexity in society”5

The early hacker culture has been in favor of non-commercial, non-proprietary software, where

recognition of technical expertise, as well as simply discovering if something will work or not –

rather than direct financial returns - have been important incentives for writing code.

Linux gives the hackers the challenge of improving software for their needs and for the benefit

of the community. The good of the community enters into the preferences of the individual

contributors. For this fact, the open source community is often described as a gift-culture (Mauss

1959). The publication of new parts of the program or the contribution to the development of the

software is perceived as a gift, characterized by the psychological benefit that the donator obtains

in helping the other members and giving his contributions for the benefit of the community

(Raymond 1999). Contributing to the production of the software allows users to make and preserve

social links and implies the duty of reciprocation. In the developers’ community, this happens even

if the gift is not direct to an individual person but to members of the community. People believe that

contributions help to form a tacit agreement within the community to contribute in the future.

One of the main reasons for developer’s to participate in the open source project is to create a

particular software, one that does not exist in the markets, to better satisfy their own needs.

Programmers want to be able to strip the source code down to exactly that set of functions that they

need.

Moreover, for a hacker programming is an entertaining task - one from which he/she obtains

great joy and can display his/her own abilities. To a programmer, code writing is an art from which

they obtain artistic gratification. As Ulman (1997) shows, programmers experience a strong

personal satisfaction in creating “something that works”. In addition, in a recent study of people

involved in open source software, results show that more than 70% of open source’s contributors

lose track of time while programming. In these cases, “writing open source code is not a cost but a

benefit, not investment but consumption”6

From certain points of view, open source projects can be analyzed as a social movement.

Social movements can be defined as “efforts by a large number of people to solve collectively a

problem that they have in common” (Toch 1965). This definition fits with the aims of the open

source movements, such as the desire to modify the programs to satisfy personal needs, improve

the quality of the software, protecting the diversity of software solutions against the strong

5 Pedersen 2001
6 Osterloh et al. 2002

 7

dominance of large economic enterprises, specifically competing against Microsoft’s supremacy

(Microsoft has been a common enemy since it represent ideals that are not relfected in the Open

Source movement). Clearly, the more important these aims are for the programmers, the more the

programmers are willing to contribute.

Open source developers are highly suspicious about the “customerization of the computers”

caused by Microsoft. Moreover, programmers often believe that their participation is essential for

the success of the project. Along with this instrumental component, we can consider the perception

of the programmers to have the right abilities for a certain task: they believe that their contributions

will be highly useful to the community. This is due to the fact that they are among the few people

capable of producing the best results. In other words, they attribute a great importance to their

participation in order to achieve the project’s goals.

A further aspect connected with the motivations to contribute in the open source projects, is

similar to the motivations that leads the scientific community to share their results. Disclosing and

sharing results in the open source community allows programmers to receive feedback from their

peers. This in turn permits programmers to improve their results and correct their errors.

Considerations and comments emerged in the discussion groups stimulate more developments and

are considered a challenging way in which one can access a wide audience composed of the best

programmers. This provides critiques and stimulation and gives the programmers the possibility to

learn from the suggestions of others. In addition, due to the system of credits that give a clear

visibility to contributors, disclosing results on the internet enables programmers to gain intrinsic

reputation and recognition, signaling their abilities and hence increasing prestige for their work.

The aim to gain a reputation can also be viewed as a competitive motivation. Competition among

programmers is an important stimulus in the motivation that leads people to get involved in the

open source project. Finding the best solution or creating something entirely new gives intellectual

gratification and intrinsic satisfaction. They participate, in a sense, to satisfy a demand for which

there is no corresponding supply - in short to “fill an unfilled demand”. (Green, 1999)

Another important factor that helps to explain the popularly of Linux is the availability of skill in

people willing to develop software. Many programmers are current or previous computer science

students that work with UNIX, while some are employees already familiar with this program. This

fact significantly reduces the time investment in knowledge necessary for programming.

Participating in the projects provides great information and ideas for research and graduate and

undergraduate thesis. Also, having access to the source code represents an extraordinary way to

learn and improve one’s skills. The programmers can study the software very deeply and learn from

following the questions and their answers. Studying the solutions to problems from the best

programmers represents an immense learning opportunity. All these non-monetary benefits can be

considered as ego gratification incentive.

As we saw earlier, contributions to open source software are motivated by the desire of

programmers to show off their talents. In addition to the intellectual reputation gained by recognition

and prestige among community peers (another important reason to participate), motivation comes

from significant monetary benefits. Contributors can make money indirectly by displaying their

 8

abilities in the open source community. The reputation is in the public domain as a result of the

system of credits. Gaining reputation and signaling talent gives programmers the chance to be

noticed by software firms. The effort spent in contributing to the open source software can be

turned into monetary benefits through employment by a commercial firm or through easier access

to venture capital. Obviously the more famous a project is the greater are these advantages. Those

can be considered, from an economic point of view, as career concern incentives. Lerner and

Tirole7 grouped the ego gratification incentives and career concern incentive in a unique category,

the signaling incentives. As they point out, referring to the work of Holmström8, those incentives are

stronger the more visible the performance to the relevant audience is, the higher the impact of effort

on the performance is and the more informative the performance about the talent is.

Eric Lee Green proposes a further element connected with monetary benefits that can be

important to understanding the participation of programmers9. He suggests that there exists the

motivation of advertising goods and services. Gaining reputation and recognition helps

programmers to sell private service to those who require experts in order to sell help books and

consultancy. He also underlines a special motivation connected with filling an unfilled demand:

“there are people who like source code. They like to read source code with their breakfast. They

debug source code on their lunch break. They hack new routines into source code after dinner time.

Yet nobody is willing to sell them any source code to hack on. So they create their own.”

An internet-based survey of 141 contributors to the Linux kernel (Hertel et al., 2002) shows very

interesting results that help to define the characteristics of the programmers involved in the

development of open source software. They utilize this data in analyzing the importance of different

motivations that lead to the participation in the project. Some of these results of the survey are very

interesting.

1. 67% of the programmers were full time professionals and 23% of them were students.

2. On average, they work 18.4 hours per week on the Linux development.

3. 20% of those participating received a salary for their Linux programming and work on a

regular basis; 23% at least sometimes. The remaining subjects receive no salary for their

effort. Their time on the Linus project is completely voluntary.

4. 38% of the developers’ group could carry out the Linux-related programming during their

regular working hours (although this did not imply that this work was part of their official

job). The remaining 62% developed the software during their spare time.

5. 40% of the developed group spent less than 10% of their spare time working on Linux. 48%

spent between 10% and 50% in programming and the remaining more than 50%.

6. 59% of the developed group indicated that they worked in a group, providing evidence that

at least some spontaneous teamwork exists within the Linux kernel community.

7 Lerner and Tirole 2002a
8 Holmström 1999
9 http://badtux.org/home/eric/editorial/economics/php

 9

7. The average satisfaction score was 4.4 (standard deviation 0.7, scale range between 1 and

5), indicating that people were quite happy with the working process.

A prerequisite necessary in order for all these motivations to be sufficient to produce the

development of Open Source software is trust. In this case, trust can be defined as the expectancy

of the members that their effort will be reciprocated and not exploited by other members

(interpersonal trust) and that the electronic support system works reliably (trust in the system)

So far, the culture and the motivations that drives Linux’ contributors should be clear. Before

analyzing the differences in the software’s development, it is important to briefly point out

Microsoft’s motivations and culture: it is one of technical excellence focused on the development of

high quality products that are to be sold in order to increase market share and maximum profits. In

reference to Microsoft’s working force, recruiters “want people who are not simply interested in

programming for the sake of programming, but who seek personal challenges and enjoy shipping

products into the marketplace, making money for themselves and the company”10. It seems clear

that for Microsoft the development of a product is not an end, but just a means for accomplishing an

end – to gain money. In this sense, the “community” inside Microsoft behaves according to the

neoclassical maximization postulate.

From an economic perspective, having a mass market product which close down the boundaries

and can work with little specialized knowledge from the user has enabled a high diffusion as well as

a standardization of communication.

DIFFERENTS APPROCHES TO SOFTWARE DEVELOPMENT

In general, software development is very complicated and involves a substantial amount of

experimentations and trial-and-error learning. This renders it a cumulative process where

improvements are incremental rather than radical.

The Waterfall Model

Software development has traditionally been considered as a process in which we can

differentiate three main parts:

Specification: that is, the definition and design of the product. During the specification phase, the

main technical requisites and functions of the product are determined, as well as its architecture.

Development: during the development phase the ideas generated in the specification phase are

implemented in code: developers create the constituting parts of the software product.

Integration and testing: once the different parts of the system have been created, they are

integrated and tested in order to detect potential errors and incoherencies in their interaction.

10 John Seabruck quoted in Cusumano and Shelby

 10

What has been described so far constitutes what is called the “traditional” or “waterfall” linear

model for software development. Although this methodology has been replaced by more modern

practices, it is a useful conceptual framework for thinking about the basic tasks that should take

place during software development.

The basic problem of the waterfall model is that it assumes perfect knowledge about the future

evolution of the software project from its beginning. Given the complexity of software development,

this certainty typically appears as an exception, not as the rule, most of the times. Unexpected

integration, usability and bug problems that are difficult to solve without big changes in the structure

that was designed at the beginning, are found at the latest stages of the project. The

implementation of the specifications may become impossible because of unpredictable coding

problems. Accurate scheduling becomes a heroic task and unreliable, malfunctioning and difficult to

use products are at the end released.

The Spiral Model

The solution for many of these difficulties has been found in the “spiral model” – one that is

followed by Microsoft. The spiral model acknowledges the uncertainty and complexity of software

development by being less ambitious in its span and long-term planning. It consists of what it could

be considered as an iterative version of the waterfall model taking smaller steps. To a certain

extent, the boundaries between the different phases previously considered dissolves. Using

Microsoft’s terminology, components are built, tested and integrated on a co-ordinated, “daily” base,

in what has been called the “synch-and-stabilise” methodology. The specifications are much more

flexible and abstract (basically defining what the product should be, according to the needs of the

target market), allowing for a development phase in which problems are dealt with as they are

found and the decision about trade-offs between different functions becomes simpler. After a

certain amount of time the product is integrated and tested, and the encountered problems

corrected, avoiding the kind of “infinite defects” situations found at the end of projects following the

waterfall model. Testing is carried on almost as soon as the code is created in order to avoid bugs

sliding into the evolved, incrementally constructed, future system. Usability is easier to build into the

product from its inception through the exposure of users to the working releases that are being

developed.

Still there are problems associated to the spiral model: they mainly have to do with the

coordination and management of those groups in charge of the different parts that constitute the

system. In order to function correctly, this methodology requires a very well synchronised evolution

of the components that are integrated into the software program. And even though testing takes

place on a more exhaustive and comprehensive basis than in the waterfall model, it is impossible to

guarantee a “perfectly reliable” product given the wide scope of real situations and conditions in

which it will be used (external complexity). Beta testing - that is, testing of the product by external

users in real-life conditions before release - is a way of alleviating these problems, but not their final

 11

solution. There are still problems with schedules and quality of the product, especially in the case of

Operating Systems, the most complex and difficult to develop software products.

The Open Source Model

The Open Source development model followed by Linux and other software programs such as

Apache, the Pearl Programming Language or Sendmail is based on organisational arrangements

that are very different from those described before. Open Source means that the code underlying

the software program being distributed is available to anyone interested in it. Most software

companies do not make their source code available, and consider it a part of their intellectual

property, mainly for strategic reasons.

Open Source works on a decentralised basis, and the boundaries of what we could define as

the “community of developers” are very loose. The development of products such as Linux is made

by volunteers and could be described as follows: the manager of the “Linux Project” (Linus

Torvalds) releases the different versions of the Linux OS and distributes them through the Internet.

Those interested can delve in the source code of Linux and improve or test it, as well as create new

features. The developers determine specifications and designs of new features and functions.

Any kind of change, improvement, correction or feedback regarding errors is submitted back to

the “coordinating centre”, which is in charge of incorporating the improvements to the next release

(that is, integrating the different elements contributed by the community into a new version of the

product).This centre is also responsible for guiding the development of the project, by choosing the

path of technological evolution from amongst all the possibilities explored by the community, and

asking for additional effort in the areas where improvement is perceived as necessary.

The releasing policy in the case of Linux takes place on a different basis than in most software

products. Instead of trying to release moderately reliable products by internal testing, Linux is

released at a very fast pace, and reliability is achieved by the external testing in real conditions

performed by users and the developer community. The numeration of the different releases

indicates whether they are stable (in case they have been tested thoroughly and bugs have been

detected and fixed) or not. Users can choose which of the versions to use, depending on their

interests and objectives.

This model is based on a very special kind of licensing arrangement, the General Public

License (GPL), which covers all Linux releases. That is, there is no possibility for appropriation of

the development of Linux. Even when it is sold, users will have the right to access its source code

and modify it, and redistribute or sell it. In this sense, Linux is public property.

Of course, the Open Source model is not devoid of problems: the decentralised, non-

hierarchical organisational arrangement adopted as its development strategy can provoke what has

been defined as “forking” (the apparition of different incompatible products) or mismatches in the

assignation of the developers to tasks (maybe those more tedious but necessary pieces of work will

not be performed by anybody). We should also take into account that the evolution and

 12

improvement of Open Source products depends on the will of the volunteer community. This can

create significant uncertainties about the future evolution of the product.

The difference between Microsoft and Linux seems, by now, clear. Not only are their

development models different, but also the motivations. And it is essential to take into account that

these two aspects are not independent. Moreover, different objectives mean different constraints.

As it will become clear later some of Microsoft’s design and development decisions are constrained

by the main objective of the firm, which is to maximise profits. Certain strategies that would allow for

better quality products are neglected because they would loosen the control of the firm over its

product and complementary markets, thereby reducing their potential profits.

THE MANAGEMENT OF COMPLEXITY

Having mentioned the interrelationship between motivations and potential strategies that can be

adopted, it is important to focus on specific issues relating to the methodologies that each of the

alternative paradigms being analysed employs to deal with the complexity of software development.

I will point out where the constraints created by the motivations of the different communities restrict

the adoption of those that seem to be more efficient development strategies.

Modularization

Modularization has been described as one of the more efficient methodologies for the building

of complex structures composed of interconnected subsystems. It proposes the creation of

independent subunits that then will be interconnected with clear and clean interfaces to finally give

form to the larger construction. Through the modular process it is easier to create the product and

maintain it (it is easier to determine what does what and to solve a problem by determining which

module or linkage is malfunctioning). Modularization is certainly a way of improving software

development. It makes design easier and also more efficient: building blocks with the same

functions can be reused for different products. In a dynamic sense, modularization permits the

easier substitution of different components and the enhancement of subsystems of the product.

This reduces the complexity that would typically be dealt with when altering the product.

Linux is a very modular OS, based on design principles inherited from the first Unix OS.

Modularity is essential for the Linux decentralised development model. According to Linus Torvalds

(1999), the key to the success of open source is its modularity. Talking about Linux, he argues that

“what is needed is as modular a system as possible. The open source model of development

requires it so as not to have people working at the same point at the same time.” Coordination is

thus made possible by a sensible technical choice that in simple terms involves “keeping the kernel

small and limiting to the minimum the number of interfaces and other restrictions to its future

development”.

 13

On the other hand, although Microsoft has introduced in its development process

modularization design techniques, it has on many occasions preferred to integrate products (that is,

to link the source code of different functions instead of designing different modules for each of the

functions). The reasons for this are performance (in this way the programs take up less memory

and work together more effectively), and commercial ones: the use of integration makes bundling

(selling different products in the same package) easier.

Decentralisation

As it has been noticed, organisational arrangements constitute an essential part of the

development models followed inside technological paradigms. Hierarchy and decentralisation

constitute different, although in most occasions complementary, kinds of organisational settings.

Hierarchical organisations are based on a top-down approach to management: information (in the

form of “commands”) flows down the hierarchical chain to those subordinated, assigning them to

different tasks. In the case of decentralisation, semi-independent units work in a more autonomous

way (albeit subject to a certain hierarchical control in most occasions, that tries to co-ordinate the

activities of the independent productive “cells”). The determination of whether or not

decentralisation is possible within an organisation is, to a great extent, determined by the

technological nature of the development process: certain products allow for a greater degree for

decentralisation than others. In the last two decades there has been a strong surge towards

decentralisation and redesigning of processes in order to allow workers for more independence and

creativity in the performance of their productive activities. Some reasons for this are as follows:

Through decentralisation, it is easier to determine the output for each of the working units. This

makes management easier (in a sense, the advantages of decentralisation are similar to those of

modularity: it becomes easier to determine what is going wrong and where) and facilitate the linking

of rewards to performance, providing incentives for workers to increase their effort, and therefore

helping to solve the typical problems of principal-agent found in most firms.

Through decentralisation “informational responsibilities” are more efficiently distributed across

the firm. The manager is, to a certain extent, relieved of the burden of coordinating the productive

process to its finest degree (for what an enormous amount of information is required for this).

Workers have a greater opportunity to take part in the decision-making process in the areas in

which they are most knowledgeable.

In the same way, process innovation is favoured: there is no need for redesigning enormous and

very complex production processes in order to introduce innovations. Small changes in the

operating units can increase their performance without affecting the rest of the productive system.

Workers, who are better informed about what they are doing, can introduce small-scale innovations.

The human capital of the whole organisation is exploited in a more efficient and comprehensive

way.

 14

Microsoft is one of the organisations that, as Brooks signals, has developed a mentality of

making “large teams work like small teams”11. However, given the need for integration (already

mentioned) and for a certain degree of control over schedules and interactions between

components in a less modularised product, decentralisation cannot be adopted in Microsoft to the

degree observed in the case of Linux. The modularity of the Linux OS makes decentralised work

easier: there is little need for co-ordination among a great number of developers localised all

around the world. This decentralization has became possible because of the expansion of the

Internet. The heterogeneity of these developers also provides Linux with what it might be called a

“greater pool” for the exploration of the space design, which increases the innovative potential of

this system: The open nature of Linux makes it easier for many different people to examine its code

and consider new ways of improving it. Given the tacit, personal components of knowledge (very

present in the case, for example, of software coding), this system allows for very diverse

perspectives and original approaches to be channelled in the development of Linux12.

Decentralisation makes it possible for literally hundreds of developers to concentrate on the

same piece of code and explore different ways of improving and debugging it without an

organisational hierarchy that is concerned with the “allocation of human resources”. From those

suggestions, the best ones can be chosen by the centre – those in charge of integrating the

system. Another advantage of decentralisation is that it avoids the problem of having to find a

consensus amongst different projects inside an organisation. The independence between the

different development actors makes it possible for everyone of them to act in its best interests, that

is, the development of high quality components and functions.

Because of this same reason, and taking into account that Linux developers tend to be Linux

users as well, we will find that decentralisation increases the diversity of versions for the system

(different users adapt the system to their needs). This is a very straightforward way of integrating

users into the design of software.

The main downfall associated with this kind of extreme decentralisation that is adopted in the

creation of Linux is a potential loss of control over the development process. In the case of Linux,

there can be no direct assigning of manpower to the solution of specific problems. Linux developers

“assign themselves” to the tasks that they think they should be performing. Although in some

senses this constitutes an advantage (self-assignment may be an easy way to match skills with

tasks), on the other hand tricky and less exciting – albeit necessary – activities may be neglected.

Communication and Control

Communication and control of activities are deeply linked to the hierarchical or decentralised

nature of an organisation. Management consists of a transmission of information that tries to

influence an actor so that he/she performs a task in a way that is considered to be more efficient,

given the objectives of the organisation. If we consider this definition of management, we could say

11 Brooks 1995
12 Raymond 1999

 15

that in Linux there is no management at all. In the case of Linux the only flow of information that

goes top-down is the release of new versions as a set of “information”. The feedback that the centre

obtains makes up the actual components that will be integrated into the next release. Moreover, the

programmers involved in Open Source explicitly use comparisons about the evolution of

alternatives in terms of selecting the best and weeding out of the worst.

In the case of more formal management, there are decisions at the top which are transmitted to

the bottom and then feed back from the bottom to the top, reporting on the results of the activities

previously “ordered”. The need for information processing will be stronger in this kind of

arrangement: the manager needs to determine what is needed and then ask his/her subordinates to

do it. Then the manager obtains information about the results. In contrast, in the case of Open

Source, the “manager” just tells the community what the situation is and the community gives

him/her the potential answers from which they should choose.

The structure that we could more clearly associate to Linux has, therefore, some important

advantages in the dynamic and complex world of software development. First, it becomes easier to

avoid organisational inertia and adapt more flexibly to changes in the environment. Decisions come

from the bottom – where more knowledge will be accumulated – that present a more accurate

perception (and conscience of the importance) of potential future alterations in the competitive,

technical and social setting.

Another important issue is that the Linux organisational arrangement increases this paradigm’s

innovative potential. Lawrence Lessig argues that Microsoft, by keeping its source code secret and

organising research and development on a hierarchical basis (it does not matter that the

corporation is to a certain extent decentralised; still, basic decisions about allocation of resources

and directions of research are made at the high levels of management), it can block those

innovations that threaten its power or may cannibalise the sales of older products. After all, as I

have said before, Microsoft’s main objective is not to produce a maximum quality product but to

maximise profits. On the other hand, there is no management in Linux that can behave strategically

in order to decide which innovations are to be developed an, in some extent, adopted. The nature

of Open Source is, in a sense, quite democratic, and its leaders should take those decisions that

are considered by the community to be the right ones.

Given that the objective is not profit-maximisation, the leaders of the movement do not have

incentives to behave in ways that contradict the maximisation of quality objectives of the

community.

This special characteristic of the Open Source movement – that is, the absence of a top-down

management and the subordination of the “centre” that integrates the product to the will of the

developing community – creates, on the other hand, the potential problem of forking, illustrated

through the following example: Imagine a case in which two different ways of implementing a

solution into the next release of Linux (A and B) are submitted to the centre. The centre chooses A

because its members think that it is better, but a part of the community does not agree and instead

chooses B, starting a new project using B as a solution. Linux will be forked, and the developer

community split. Two different products will have been created, with potential incompatibility

 16

problems. Since the Linux model relies on the work of that volunteer community, forking would

considerably weaken the strength and capacity of product improvements, with the network

dynamics already mentioned creating a vicious circle of less developers, less quality, and therefore

– again – less developers… Forking can be caused by disagreements over technical issues, and its

avoidance relies, to a great extent, on the capacity of the centre of the community to choose the

right decisions in what refers to technical matters. Until now, Linus Torvalds and his lieutenants

seem to have been successful at this task.

Testing

Testing the software is probably the most important aspect in which the two approaches differ.

Before analyzing the technical aspects, the economic relevance of testing has to be taken into

account: complexity ensures that most of the cost of software arises from testing, debugging and

customer maintenance, not from the original design and coding. One study found that testing,

debugging and maintenance account for 82% of the cost of the software13

It has already been mentioned that testing inside a firm is unable to discover all the problems

and bugs hidden within a program’s code because of the impossibility of considering all of the

potential scenarios in which this program will be used. In order to alleviate this difficulty, most

software organisations – including Microsoft –tend to recur to Beta testing strategies (the test of the

product by external users prior to release). In the case of Linux, the testing strategy adopted is quite

different: products are mainly tested by users once they are released, in real conditions. Users can

either solve the problems that they find and submit “patches” (corrected portions of code) to the

centre, or provide feedback about them, signalling therefore where other developers should focus

their debugging efforts. This is made possible by the availability of the source code and the

modularity of Linux (that makes it possible to change some parts of the product without affecting the

rest).

In a way, Linux users become testers of the product. This makes the debugging and improving of

the product much faster and comprehensive. As Raymond states, “given enough eyeballs, all bugs

are shallow”14. The potential problems associated with this approach – that is, uncertainty about the

degree of reliability of a product at any given moment in time – are solved through the already

described “two-track releasing approach”, with the simultaneous availability of stable and

experimental versions from which users can choose, given their interests and objectives.

Another fundamental advantage of Open Source, is that developers are not subject to the

pressures that are induced in software houses by corporate announcements of more updated and

efficient releases.

13 Cusumano 1995
14 Raymond 1999

 17

LINUX’S RELATED ASPECTS

When we consider the Linux operating system, we need to take into account the presence of

aspects that have very little to do with the creative work: programming; the development of

graphical interfaces, the compilations of technical manuals, the online support in newsgroups and

so on. Although these activities display a low level of innovation, they are fundamental for the

adoptions of Open Source software. The spread across society depends on a cumulative series of

little incremental innovation displaying, in many cases, of no intrinsic technological interest.

Another problem that emerges when analyzing the intrinsic characteristic of Linux is connected

with its modular nature; for users, the modularity of the operating system poses problems. Getting a

working operating system requires one to download all kinds of files. These files are the source

code. They have to be compiled into working computer code. For many users, this requires more

expertise or time than they might have available.

The solution to these problems seems to have been found by companies and software houses

that base their activities on the commercialization of Open Source software; more specifically, they

sell a “package” that, in addition to the free software, includes consultancy, manuals, maintenance,

updating and training. This business model is widely accepted in open source communities and it is

characterized by a detailed regulation presenting innovative legal solutions which address the

relation between free and on-payment services. Red Hat, for example, is probably the most famous

company of this sort that puts together and compiles the source code of the Linux operating system

– obtaining a program ready for installation, together with a set of accessory applications and

complete documentation, which is distributed on a CD at less than 100 dollars. What these Linux

distribution companies do is to create economic value by packaging the Linux goods and services

into a somewhat more standardized product. They also provided a focus for corporate users, who

want some company to guarantee stability and provide technical support. Despite a discussion of

market distribution, it should be noted, however, that the price between the two alternative

operating systems is still dramatically different.

Besides playing an important role in the diffusion process, those companies simultaneously

solve two problems: first they secure for potential adopters a wide range of complementary

services, which are considered fundamental for reliability and usability of the software. Second,

they provide monetary incentives for the development of “non-interesting” activities, which do not fit

the typical motivations of the open source community. Moreover, distribution through the market

can thus reduce other (latent or perceived) costs, even if it is cost to obtain the software package.

In addition, it gives legitimacy as a “real” alternative

This is a fundamental point for two reasons: on the one hand, the tendency of open Source

programmes to become more user-friendly enables their diffusion in increasingly broad bands of

the population. On the other hand, user-friendly programmes and user assistance are the core

business of many of the new companies who, by managing to make profits through open Source,

 18

have demonstrated that in case of software the word “free” has the meaning of “free speech” and

not “free beer”15

Usefulness and attractiveness to users is related to availability of complementary hardware and

software. The usefulness depends to some extent on the availability and quality of other software

programs as well as the types of hardware upon which it can be run. The word “attractiveness”

highlights that the choice of an operating system depends not only on the actual users who have

already chosen it, but also on potential users which might chose it.

Other types of firms – such as database or hardware vendors – contribute to further use and

development of Linux by making their software or hardware compatible. Such compatibility and

such recognition of the technical value of this operating system, in turn, give the core software a

greater range of users as well as credibility and legitimacy. Both of these effects attract additional

user of Linux, both for individual PCs and corporate network server. Thus, firms become

increasingly important for software development of Linux.

In the case of Linux, as more users chose it, this stimulates programmers, hardware

companies, applications companies, and so forth to develop appropriate goods and services

around the operating system that might interest different types of actual and potential users.

The existence of commercial subjects using open source software guarantees the future

survival of the software. The guarantee that software will continue to be produced and developed is

a key element in the adoption decision. Users, in fact, can avoid the risk of having to change

applications and platforms, incurring high switching costs for infrastructures and personal training.

NETWORK EXTERNALITIES

From the point of view of demand, network externality is an important feature that needs to be

analyzed. Following the definition of Katz and Shapiro, “the utility that a user derives from

consumption of the good increases with the number of other agents consuming the good” (Katz and

Shapiro 1985). Externalities can be direct, indirect or deriving from complementary services. Direct

externalities derive from individual physical membership of a network (the classic example is file

exchange). Indirect network externality characterizes the so-called hardware-software paradigm in

which two or more complementary goods are joined together forming a system that works only

thanks to the contribution of all its components. The positive indirect externality is given by the fact

that the complementary good becomes more quickly economical and available with the growth of

the market in which the good is compatible with it. The third source of externality regarding

complementarity arises from the idea that the quality and the quantity of services associated with

the good is dependent on the number of units of the good that have been sold.

Dalle and at. (2005) refer to local interactions to explain the dissemination of the Linux system

in place of Windows. In their view, what is important in the choice of an operating system is not so

much the total number of other individuals who use it, but the number of those who do so within the

group with whom the individual interacts, i.e. a local network of reference.

15 Raymond 1999

 19

The characteristics of such a network vary according to whether the nodes are represented by

Open Source software or by those using a commercial one. A widespread phenomenon amongst

the former is in fact the so-called “advocacy” – theorized by leading members of the Open Source

movement. This is a form of one-to-one marketing whereby the users of Open Source programs are

invited to convince other members of their group of reference to do likewise and to abandon the

commercial sector. Advocacy has an exponential growth: amongst its aims there is that of

transforming an individual into a new disciple of the movement and hence into a potential advocate.

The diffusion process of Open Source software seems then to satisfy the hypothesis at the

heart of the existence of Critical Masses in the spread of new technology, which permits an

alteration of standards. This effect happens when certain variables characterizing a process rise

above a given threshold. The phenomenon then explodes, so that the system moves from the

stable equilibrium in which it was initially positioned and assumes another stable equilibrium. In

technology diffusion models, the variable is represented by the number of people who adopt the

new technology. The emergence of the free software as a new production paradigm therefore, does

not necessarily mean the end of proprietary software but the possibility of a new equilibrium in

which the two paradigms are going to compete.

Another important aspect is that the diffusion of the Open Source software had radically

different dynamics depending on the presence of the first mover advantage. In the sector of client-

side operating systems, where Microsoft was the incumbent when Linux appeared, the market

share of Windows is over 75% on most local markets. On the contrary, in the Web server sector,

where the technology became established later and Microsoft had no consolidate advantage, the

Open source system Apache is the incontestable leader. This suggests that whoever has the first

move advantage and quickly aggregates the network externality effect is in the best position for

dominating the market.

CONCLUSIONS

The productions of opens source software can be considered an example in which not only

monetary and selfish motivations lead people’s behavior. Beside the possibility of signaling one’s

own abilities offered by this new production system, altruism and satisfaction derived by belonging

in the Open Source Community constitute a fundamental aspect in programmer's motivations.

In addition, altruism and social motivations, summarized by the idea that information (in this

specific case the source code) should be freely available to everybody, contribute also to explain

the participation in those project motivated by the strong opposition against private software’s firms

and its leaders.

The particular motivations of agents and the rewards mechanism (both intrinsic and monetary)

are such that programmers are very efficiently organized in a multidimensional network that

includes not only programmers, but also user and tester, and often these roles interchanges. At a

close view seems also that this organization is also able to produce software that seems of better

quality that the proprietary one.

 20

The presence in the scenario of commercial companies that make profit with Linux plus the

networks externalities that Open Source Software create are other two important keys to

understand the success and the diffusion of the Linux Operating System.

 21

References

Antonelli, C., (2001): “Economics of Innovation and New Technology”, Taylor and Francis Journal,

Vol. 11 pp 127-164

Arrow, K., (1994): “Methodological Individualism and Social Knowledge”, American economic

Review, 84 (2), pp 1-9

Bassanini, A. and G. Dosi, (2000): “Heterogeneous Agents, Complementariness, and Diffusion. Do

Increasing Returns Imply Convergence to International Technological Monopolies?” LEM Working

Paper

Bensen S. M. and J Farrell, (1994): “Choosing How to Compete: Strategies and Tactics in

Standardization”, Journal of Economic Perspectives, Vol. 8(2), pp 117-131

Berzoukov, N.(1999): “A Second Look at the Cathedral and the Bazaar”, First Monday 4

Berzoukov, N.(1999): “Open Source Software as a Special Type of Academic Research (Critique of

Vulgar Raymondianism)”, First Monday 4

Bonaccorsi, A. and C Rossi (2002): “Why Open Source Software can Succeed?”, LEM Working

Paper

Bonaccorsi, A. and S. Rossetto (1999): “Modularity in Software Development. A Real Option

Approach”, International Journal of Software Development, Summer

Brooks, F., (1995):”The Mythical Man-Month” Reading, Massachusetts, Addison-Wesley

Cusumano, M. and R. W. Selby (1995): “Microsoft Secrets: How the World’s Most Powerful

Software Company Creates Technology, Shapes Markets and Manage People”, New York: Simon

and Schuster

Cusumano, Michael A. and David B. Yoffie (1998): “Competing on Internet Time: Lessons from

Netscape and Its Battle with Microsoft”. New York: The Free Press

Dalle, J. M., David, P. A., Rishab D., Ghosh A. and W. E. Steinmueller (2005): “Advancing

Economic Research on the Free and Open Source Software Mode of Production”, in Bulging Our

Digital Future, Wynants & Cornelis, VUB Press, Bruxelles, Belgium

 22

Dempsey, B. J., Weiss, B., Jones, D. and J. Greenberg (1999): “A Quantitative Profile of a

Community of Open Source Linux Developers”, University of North Carolina at Chapel Hill, School

of Information and Library Science, Technical Report TR-1999-05

Floyd, C., Züllighoven, H., Budde, R. and R. Keil-Slawik (editors) (1992): “Software Development

and Reality Construction”, Berlin Springer-Verlag

Ghosh, R. and V. V. Pekash (2001): “The Orbiten Free Software Survey”, First Monday

Glass R. L. (1999):” Of Open Source, Linux and Hype” IEEE Software, 16(1), pp 126-128

Green, L. E., (1999): “Economics of Open Source Software” 1999

http://www.badtux.org/editorial/economics.html

Hars, A. and S. Ou (2002): “Working for Free? Motivations for Participating in Open-Source

Projects”, International Journal of Electronic Commerce

Hermann, G., Hertel S. and S Nieder (2001): “Motivations of Software Developers in Open Source

Software”, University of Kiel Working Paper

Hertel, G., Dater, C. and U. Konrad (forthcoming), (2002): “Motivations gains in Computer-

supported Teams”, Journal of Applied Social Psychology

Himanen, P. (2001):”The Hacker Ethic and the Spirit of the Information Age”, London: Secker &

Warburg

http://archive.salon.com/21st/feature/1998/05/cov_12feature.html

Holmström, B. (1999):”Managerial Incentive Problems: A Dynamic Perspective”, Review of

Economic Studies, Vol. 66, pp 169-182

Hurbeman, B. and C. Loch (2002):”A Punctuated Equilibrium Model of Technology Diffusion”, Xerox

Palo Alto Research Centre, Palo Alto

Jarvenpaa, S. L. and D. E. Leidner (1999): “Communication and Trust in Global Virual Teams”,

Organization Science, Vol. 10, pp 791-815

Katz, M. and C. Shapiro (1985),:“Network Externalities, Competition, and Compatibility”, American

Economic Review, 1985, Vol. 75, No. 3, pp 424-440

 23

Katz, M. and C. Shapiro (1986): “Technological Adaptation in the Presence of Network

Externalities”, Journal of Political Economy, Vol. 94, No. 4, pp 822-841

Koch, S. and G. Schneider (2002): “Effort, co-operation and co-ordination in an Open Source

Software Project”, GNOME, Information System Journal, Vol. 12, pp 27-42

Lakhani, K. and E. von Hippel (2000):“How open Source Software works: “free” user-to-user

assistance”, MIT Sloan School of Management Working Paper #4117 (May)

Lakhani, K. R., Wolf, B., Bates, J. and C. DiBona (2002): “The Boston Consulting Group Hacker

Survey” http:/www.bcg.com/opensource/BCGHackerSurveyOSCON24July02v073.pdf

Langlois, R. N. (forthcoming) “Modularity in Technology and Organization”, Journal of Economic

Behavior and Organization

Lerner, J. and J. Tirole (2001): “The Open Source Movement: Key Research Questions”, European

Economic Review, 2001, No. 45, pp 819-826

Lerner, J. and J. Tirole (2002a): “Some Simple Economics of Open Source”, Journal of Industrial

Economics, Vol. 52, pp 197-234

Lerner, J and J. Tirole (2002b): “The Scope of Open Source Licensing”, Harvard Business School,

Working Paper, Boston, MA

Lessig, L. (2004): ”Future of Ideas -- Microsoft Reader eBooks” at

http://www.ebookmall.com/ebook/114228-ebook.htm

Liebovitch, E. (1999): “The Business Case for Linux”, IEEE Software, 16(1), pp 40-44

Manfredi, P., Bonaccorsi, A. and A. Secchi (2000): “Hetherogeneity in New Product Diffusion”, LEM

Working Paper

Mateos Garcia, J.(2001):”Can Information be free?: Motives and Evolution of the “Information

should be Free” Principle”, SPRU, Spring Term Paper

Mauss, M.(1959):”The Gift. The Form and the Reason for Exchange in Archaic Societies”,

Routledge London

Moody, G. (2001):”Rebel Code. How Linus Torvalds, Linux and the Open Source Movement are

Outmastering Microsoft”, London: Allen Lane, the Penguin Press

 24

O’Reilly, T (1999). “Lessons from Open Source Software Development” Communications of the

ACM 41 (4), pp 33-37

Osterhol, M., J Frost and A. Weibel (2002): “Solvin Social Dilemmas: The Dynamics of Motivations

in the Theory of the Firm. University of Zuricg W.P., Zurich Switzerland

Pedersen, Soren Thing (2001): “Open Source and the Network Society”.
http://opensource.mit.edu/papers/pedersen.pdf

Raymond, Eric Steven (1999): “The Cathedral and the Bazaar” at

http://tuxedo.org/~esr/writings/cathedral-bazar/cathedral-bazar

Rosenberg, D. K. (2000):”Open Source: The Unautorized White Papers” Foster City, CA: M&T

Books

Shapiro, C. and Varian, H. (1999): “Information Rules: A Strategic Guide to the Network Economy”,

Boston, Massachusetts: Harvard Business School Press

Stallman, R. M. (1994):“The GNU Manifesto”, http://www.gnu.org/gnu/manifesto

The Economist (1999): “Computer programming. Hackers Rule”, 20 February 1999

The Economist (1998): “Free software. Red Hat trick” 3 October 1998

The Economist (1998): “Software. Revenge of the hacker” 11 July 1998

The Economist (1998): “The revenge of the Hackers”, 9 July 1998

Toch, H. (1965):”The Social Psychology of Social Movements”, Indianapolis: Bobbs-Merrill.

Torvalds, L.(1999): “The Linux Edge” in DiBona, C., Ockman, S. and M. Stone: “Open Source:

Voices from the Open Source Revolution”, Beijing, O’Reilly and Associates

Tuomi, I. (2001)“Internet, Innovation, and Open Source: Actors in a Network”, First Monday

Ullman, E. (1997):” The dumbing-down of programming”, at

http://archive.salon.com/21st/feature/1998/05/13feature.html

 25

http://opensource.mit.edu/papers/pedersen.pdf
http://tuxedo.org/%7Eesr/writings/cathedral-bazar/cathedral-bazar
http://archive.salon.com/21st/feature/1998/05/13feature.html

 26

Ullman, E. (1997): “Close to the machine: Technophilia and its discontents”, City Lights, New York,

NY

Wellman, B.: “An Electronic Group is Virtually a Social Network”, in S. Kiesler (Editor) (1997),

Culture of the Internet (Erlbaum, Mahwah), pp 179-208

Witt, U. (1997):”Lock-in vs. Critical Masses. Industrial Changes under Network Externalities”,

International Journal of Industrial Organization, No. 15, pp 753-772

