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Abstract

We present an endogenous growth model where innovations are factor-

saving. We model the choice of technologies in an Overlapping Genera-

tions Model where any technology can be adopted paying a cost. Markets

are competitive and marginal productivity of factors determines factor

prices; therefore, innovations affect factor income shares. The main re-

sults are the following:

(i) The elasticity of output with respect to reproducible factors (physi-

cal and human capital) depends on the factor abundance of the economies.

(ii) The income share of reproducible factors increases with the stage of

development. (iii) Depending on the initial conditions, in some economies

the production function converges to an AK, while in other economies

long-run growth is zero. (iv) In some economies technological change may

reduce future capital labor ratio and future income.
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1 Introduction.

Since the seminal Solow growth model (Solow, 1956), the behavior of the Solow

residual has received a lot of attention in the economic literature. Endogenous

growth theorists (Romer, 1986 and Lucas, 1988) assume that the Solow residual

can be explained by the evolution of total factor productivity (TFP), which

they model as a function of different variables (physical capital, human capital,

etc.).

From a different perspective, technological improvements are explained as

changes in factor intensity. Many papers on income distribution and labor eco-

nomics suggest that an increase in the supply of skilled labor can generate skill-

biased technological change (Kennedy, 1964 and Krugman 1997, among others).

Indeed, many argue that in the last few decades, there has been human capital-

using and raw labor-saving technological change (see Kiley, 1997; Krusell et.al,

2000 or Acemoglu, 2002). In the same line, research in economic history pro-

vides evidence that the Industrial Revolution was accompanied by capital-using

and labor-saving technological change (Cain and Paterson, 1981). Moreover, in

both cases innovations were preceded by a change in factor abundance.

In this paper we subscribe to the explanation of capital-using and labor-

saving innovations and model the choice of new technologies in an Overlapping

Generations Model. This setting allows us to analyze the distributive effects

of capital-using and labor-saving innovations and see the interactions between

income distribution and innovations.

The main results of the model are the following: (i) The elasticity of output

with respect to reproducible factors (physical and human capital) depends on

the factor abundance of the economies. (ii) The income share of reproducible

factors increases with the stage of development. (iii) Depending on the initial

conditions, in some economies the production function converges to AK, while

in other economies long-run growth is zero. (iv) In some economies technological

change may reduce future income.

Three pieces of empirical evidence motivates our work:
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1. In the field of empirical economic growth, Durlauf and Johnson (1995)

and Duffy and Papageorgiou (2000) find that as economies grow, their

technologies become more intensive in reproducible factors, that is, the

elasticity of output with respect to reproducible factors is higher in rich

economies.

2. With regard to the behavior of factor income shares, we know that: (i)

In developed countries the share of agriculture in total output is usually

smaller than it is in developing countries. By the same token, the share

of agriculture in total output is reduced as economies grow. Since land is

a major input in agriculture but not in other sectors, these facts suggest

that land income share may decrease with the stage of development. Con-

sistently, in USA, from 1900 to 1945, the share of land in Net National

Product was reduced from 59% to 29% (see Rhee, 1991). (ii) Over the

past 60 years, the US relative supply of skilled work has increased rapidly.

However, there has not been a downward trend for the returns to college

education. On the contrary, over this period, the college premium has in-

creased (see Krueger, 1999; Krusell et.al., 2000 and Acemoglu 2002). (iii)

It has been argued that labor income share does not decrease or increase

with development (Gollin, 2002). However, the standard measure of labor

income share includes skilled and unskilled labor income share, that is, it

includes human capital. In the same way, the standard measure of capital

income share includes land income share. Therefore, given the behavior of

unskilled labor and land income share, it seems that the income share of

non-reproducible factors (land and unskilled labor) has decreased, while

the income share of reproducible factors has increased during the 20th

century.

3. Blanchard (1998) notes that since the early 80’s a dramatic decrease in

labor income share has occurred in Europe (5 to 10 percentage points of

GDP) and suggests that this decline could be explained by non-neutral

changes in technology.
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To account for these facts we need a model of biased technological change

where factor income shares are endogenous. We use a standard set-up (Cobb-

Douglas production function) where factor prices are determined by the mar-

ginal productivity of factors. As a consequence, labor-saving innovations reduce

labor income share and increase capital income share. In more general terms,

the model predicts that the income share of non-reproducible factors decreases

with the stage of development, while the income share of reproducible factors

grows with the stage of development. To analyze the distributive effects of labor-

savings and capital-using innovations, we differentiate between capital owners

and workers by using an Overlapping Generations Model. In this setting inno-

vations may reduce the income and savings of young people as well as the rate

of economic growth.

The relation between income distribution and growth has been studied thor-

oughly (Persson and Tabellini, 1994; Galor and Tsidon 1997; Galor and Moav,

2000; and Hassler and Rodríguez, 2000, among others). The novelty of the

paper at hand comes from the fact that here technological change affects the

marginal productivity of factors and, as a result, factor income shares. Simi-

larly, movements in factor income shares generate changes in savings and capital

accumulation. Zeira (1998) and Acemoglu (2002) among others present mod-

els with this type of technological change but do not explain long-run growth

through this relation. Boldrin and Levine (2002a) provide a model of perfect

competition, where long-run growth is completely explained by factor saving

innovations but they do not consider the effect of technology on capital income

share and income distribution.

This paper is also related to Bertola (1993 and 1996). He finds that in

a standard model with infinitely-lived agents there is a positive relation be-

tween capital income share and economic growth (Bertola, 1993), but that in

an Overlapping Generations Model, a relationship of the opposite sign may ap-

pear (Bertola, 1996). We build on Bertola’s argument by making endogenous

the capital income share. Since we assume competitive markets, capital income

share is determined by the capital intensity of the technology. Other models
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where capital intensity is endogenous are found in Jones and Manuelli (1992),

Klump and De la Grandville (2000), and Zuleta (2004) but such endogeneity is

independent of the producers’ decisions. In our model, technical advances come

from the rational decisions of people as capital owners can choose the capital

intensity of the technology.

In our framework, agents live two periods. In the first period they work,

consume and save. In the second period they use their savings to build capital

and create or adopt technologies, produce, consume, leave a bequest to their

children, and die. Finally, we assume that the capital owner has to take care of

administration and supervision, so for each firm it is optimal to produce with

only one plant and consequently only one technology is used at a time.

Technology is embodied in capital goods and capital goods of better quality

are more costly. Capital abundant countries, where the capital intensity of

the technology is higher, produce more output. As a result, capital abundant

countries have more incentives to increase capital intensity.

The effect that labor-saving innovations have on wages may be positive or

negative. A positive effect arises from an increase in output, while a negative

effect arises from a reduction on labor income share. The net effect depends

on the factor abundance of the economy. For rich economies a labor-saving

innovation leads to an increase in wages, while in poor economies a labor-saving

innovation leads to a reduction in wages. Similarly, the effect on savings and

capital accumulation depends on the behavior of wages and bequests. Thus,

if productivity and bequests are high enough, then in rich economies, as the

capital labor ratio grows, technology becomes more capital intensive and as the

economy becomes more capital abundant, the incentives for labor-saving and

capital-using technological change grow stronger. In this way, in the long-run

the production function may converge to an AK. On the other hand, labor

abundant economies may be trapped in a steady state.

Although we consider a model with only two factors, the result on the evo-

lution of the factor intensity can be extended to human capital (or any re-

producible factor), that is, as economies become human capital abundant the
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technology becomes more human capital intensive.

The paper is organized in 5 sections. In the next section we present the

basic OLG model and the results. In the third section we consider the effects of

adopting cost-less capital intensive technologies. In the fourth section we show

some simulations that illustrate the different paths that economies can follow

depending on the initial conditions. Section five concludes.

2 The Model.

In this section we present an OLG model where agents can be altruists and leave

bequests. For simplicity, we assume a logarithmic utility function, so current

savings are completely determined by current levels of capital and technology.

Savings are used to build or buy capital goods and these goods can be of

different qualities. Technology is embodied in capital goods, and technological

changes are labor-saving and capital-using. In particular, we consider a Cobb-

Douglas production function (Y = AKαL1−α) and assume that technologies are

differentiated by their capital intensity α. Any technology has a positive cost

which depends on the desired α. This cost is paid by the old people before the

production process. Thus, the capital used in the production process is a share

of their savings (δ(α)). That is, if an agent devotes s units of output to build

a stock of capital of quality α, the amount of capital of quality α is equal to

δ(α)s. We also assume the existence of a primitive technology (α0), whose cost

is equal to the price of the consumption good (δ(α0) = 1).

The cost of a technology α can be interpreted in three different ways: (i) The

cost of inventing and implementing a technology. (ii) The cost of copying a new

technology and building a similar capital good. (iii) The price premium that

has to be paid in order to acquire a higher quality capital good. In a market

economy the costs described in (ii) and (iii) are likely to be the same. If we

assume that technology is not rival, then the costs described in (ii) and (iii)

are likely to be smaller than the one described in (i). However, if we assume

that technology is embodied in goods and that it is costly to reverse engineer
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(disembody) and appropriate, the difference between (i) and (ii) is substantially

reduced (see Boldrin and Levine, 2002b). In any case, since we want to derive

conclusions for developing countries, which are unlikely to be the source of new

inventions, we can ignore interpretation (i) and assume that capital goods of

different qualities are available in the market. Thus, 1
δ(α) is the price of a

capital good of quality α.

The share of savings devoted to produce the final good (δ(α)) is assumed to

be a continuous function with the following properties:

(i)0 ≤ δ(α) ≤ 1; (ii)δ(α0) = 1; (iii)δ0 (α) < 0;

where α0 is the primitive technology and δ0 (.) is the first derivative of δ(.)

with respect to α. Therefore, the cost of new technologies is higher for more

capital-intensive technologies.

2.1 Consumption, savings and bequests

The representative consumer lives two periods and her utility depends on the

consumption when young (c), the consumption when old (d) and an inter-

generational transfer or bequest (b). We assume zero population growth and

a logarithmic utility function, which combines the three arguments (c, d and b).

The income of a young consumer is given by the wage w plus the transfer that

she gets form her parents. We assume full depreciation, so the return to savings

is the interest rate r. The young consumer takes α as given, so the problem for

the consumer is the following:

max {log(ct) + β (log(dt+1) + γ log(bt+1)} s.t. wt + bt = ct +
dt+1 + bt+1

rt+1

where β is the discount factor. From this maximization problem we find:

ct =
dt+1
βrt+1

(1)

bt+1 = γdt+1 (2)
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and

st = (wt + bt)

µ
β (1 + γ)

1 + β (1 + γ)

¶
(3)

Since the elasticity of substitution between present and future consumption

is equal to one, as is the elasticity of substitution between future consumption

and bequest, savings does not depend on the interest rate. This is a standard

result in Overlapping Generations Models (see Auerbach and Kotlikoff, 1995).

However, two new elements appear. First, α is not a parameter but a variable,

and, second, the stock of capital depends not only on savings, but also on the

technology. Therefore, factor prices depend not only on factor abundance but

also on the technology.

2.2 Technology, factor prices and savings

Agents decide savings when young, so when they are old they take savings as

given and maximize utility taking into account that kt = δ(αt)st.

max
αt,lt

{(dt) + γ log bt} s.t. A (δ(αt)st)
αt − wtlt = dt+1 + bt+1

Therefore, factor prices are determined by savings and technology,

wt = (1− αt)A (δ(αt)st)
αt and rt = αtA (δ(αt)st)

αt−1 (4)

The interest rate and the wage are given by the factors’ marginal productivity.

So α is equal to capital income share and (1− α) is equal to labor income share.

Similarly, the optimal level of αt is given by the following equality:

A(δ(.)st)
αt

µ
ln(δ(.)st) + δ0(.)

αt
δ(.)

¶
= 0 (5)

Note that after paying the cost of technology, the capital labor ratio must

be greater than one, that is, δ(.)st > 1, since otherwise it is preferable to keep

the primitive technology. Rearranging equation 5,

ln st = −δ0(.) αt
δ(.)
− ln δ(.) (6)
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Deriving equation 6, it is possible to find the relation between the savings,

s, and technology, α,

∂ ln st
∂αt

= −δ0(.)
µ
2

δ(.)

¶
+

αt
δ(.)

µ¡
δ0(.)

¢2 1

δ(.)
− δ00(.)

¶
(7)

Both the first and the second terms of equation 7 are non-negative, so there

exists a positive relation between αt and st.

[Insert figure 1 about here]

From equations 6 and 7, we can define the function s∗∗(α) = e
δ(.)
−δ0(.) αtδ(.)

and plot it in a graph relating s and α (see Figure 1). Depending on the shape

of the function δ0(.) there may exist a minimum level of savings greater than

one, such that an increase in α is profitable. Therefore, st > 1 is a necessary but

may not be a sufficient condition for investment in higher qualities of capital to

be profitable. A sufficient condition is st > s∗∗ (α0) .

We can summarize the previous results in Proposition 1:

Proposition 1 (i) st > 1 is a necessary condition for an increase in capital

intensity (and capital income share) to be profitable. (ii) st > s∗∗ (αt−1) is

a sufficient condition for an increase in capital intensity (and capital income

share) to be profitable (iii). In capital abundant economies (st > s∗∗ (α0)),

there exists a positive relation between αt and st.

On the one hand, given the technology, the production function is concave

and satisfies the Inada conditions, in particular lim
s→0

∂y
∂s = ∞. On the other

hand, the marginal productivity of a unit of savings invested in new technologies

positively depends on the amount of savings. Therefore, for low savings levels

it is better not to invest in capital intensive technologies. Now, if the savings

level is high enough to make technological changes profitable, then there exists

a positive relation between savings and technologies because the gains derived

from adopting capital intensive technologies positively depend on the level of

savings.
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2.2.1 Savings

For simplicity, we assume that the population is equal to 1 for each generation,

so total output is Akαt . The output must be divided between young people (w)

and old people (rk). Old people consume and leave a bequest (rk = b + d).

Therefore,

A(δt (αt) st)
αt = wt + bt + dt (8)

Combining with equations 2 and 4, and rearranging, yields

bt =

µ
γ

1 + γ

¶
αtAδt (αt) st

αt

so equation 3 can be written as

st+1 = A (δt (αt) st)
αt (1 + γ − αt)

µ
β

1 + β (1 + γ)

¶
(9)

Therefore, the savings level at time t+1 is fully determined by the state variables

of time t. This result, which depends on the assumed utility function, greatly

simplifies the analysis. Indeed, since in the optimum technology is a function of

savings, technology at time t+ 1 is also fully determined by the state variables

at time t.

Now, using equation 9 we derive the growth rate of savings,

st+1
st

= (1 + γ − αt))A (δ (αt))
αt st

αt−1
µ

β

1 + β (1 + γ)

¶
Therefore, we can find a steady state level of savings given the technology:

sss(α) =

µ
(1 + γ − α)βAδ(.)α

1 + β(1 + γ)

¶ 1
1−α

(10)

Now, to have an idea of the shape of sss(α) we take logs and derivatives,

∂ ln sss
∂α

=
1

1− α

µ
1

1− α
ln
(1 + γ − α)βAδ(.)α

1 + β(1 + γ)
+

µ
α
δ0(.)
δ(.)

− 1

1 + γ − α

¶¶

∂ ln sss
∂α

=
1

1− α

µ
ln sss +

µ
α
δ0(.)
δ(.)

− 1

1 + γ − α

¶¶
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Note that the second term in parenthesis is always negative. So for low

levels of sss the slope is negative, but for high levels of sss the slope of sss(α) is

positive. Therefore, both the level of sss for a given α and the slope of sss(α)

depend of TFP, A, preference for bequest, γ, the discount factor, β, and the

cost of technologies, δ(.).

Finally, from equation 10 it follows that (i) if γβAδ(.)α

1+β(1+γ) < 1, then the function

sss(α) is bounded from above and (ii) γβAδ(.)
1+β(1+γ) > 1 for any α is a necessary

condition for the economy to have long-run growth. We present this result in

Proposition 2.

Proposition 2 lim
α→1

δ (α) > 1
A
1+β(1+γ)

γβ is a necessary condition for the economy

to present long-run growth.

Therefore, bequests must be positive (γ > 0) and TFP high, otherwise

long-run growth is not possible. If there are no bequests (γ = 0), Proposition

2 indicates that long-run growth is not possible1. This result was previously

obtained by Boldrin (1992) and Jones and Manuelli (1992) in different set-

ups. Additionally, Proposition 2 tell us that for the economy to reach long-run

growth, the cost of capital goods must be bounded ( lim
α→1

δ (α) > 0).

We explain the intuition behind Proposition 2 in the following lines:

First, savings at time t+1 are the product of the savings rate and the output

at time t. So given the savings rate, the higher the TFP, the higher the savings

level. For any initial conditions, if TFP is low, savings are low, and long-run

growth is not possible.

Second, since output is divided between workers and capital owners and the

latter do not save, the savings rate of the economy depends on the labor income

share. Thus, if the technology continuously grows more capital intensive, labor

income share decreases period by period. If bequests are zero, then the savings

rate decreases as the technology becomes more capital intensive and converges

to zero as α goes to one. Therefore, if there are no bequests long-run growth is

not possible.
1This result depends on the assumption of Cobb-Douglas production function and on the

OLG setting.
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Third, if lim
α→1

δ (α) = 0 the cost of capital goods goes to infinity as α goes to

one, so the incentives to adopt more capital intensive technology disappear.

2.3 Steady state and long-run growth

Until now we have described the behavior of capital abundant economies, where

agents have incentives for technical changes and the behavior of low income

economies, where there are no incentives for technical changes. In this section

we identify the conditions under which an economy can achieve long-run growth

and characterize the steady state, whenever it exists.

To characterize the steady state we can use the functions s∗∗(α), which shows

the relation between technology and savings that old agents choose, and sss(α),

which shows the steady sate level of savings given the technology. Using these

functions it is possible to find a steady state level of technology, αss, defined by

sss(αss) = s∗∗(αss). Note that, if s = s∗∗(αss), then the chosen technology is

αss and if the technology is αss then the steady state level of savings is sss(αss).

Therefore, αss is a steady state technology.

In figures 2 and 3 we plot the functions s∗∗(α) and sss(α). In figure 2 we

assume that the slope of sss(α) is negative (low levels of A, γ and β). In this

case the two functions cross only once, so there is one steady state technology

(αss) and one steady state savings level (sss(αss)). Note also that the steady

state is stable, that is, if s > sss(αss), then the growth rate of savings is negative

and if s < sss(αss), then the growth rate of savings is positive.

In figure 3 we assume that the slope of sss(α) is positive and converges

to infinity when α goes to one (high levels of A, γ and β and lim
α→1

δ (α) >

1
A
1+β(1+γ)

γβ ). In this case we may have two steady states, one stable, αss, and

one unstable, α∗. However, we may also have no steady state. Indeed, any

increase in TFP moves up the function sss(α), augmenting αss and reducing

α∗. Therefore, there exists a level of TFP, A∗∗, such that αss = α∗. From the

definition of A∗∗ it follows that if A > A∗∗, there is no steady state.

[Insert figures 2 and 3 about here]
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Proposition 3 summarizes the previous results.

Proposition 3 If lim
α→1

δ (α) > 1
A
1+β(1+γ)

γβ and A < A∗∗, then there exists a

level of technology, α∗, such that: (i) sss(α∗) = s∗∗(α∗), (ii) if under the initial

conditions the agents of the economy choose a technology α such that α < α∗,

the economy converges to a steady state and (iii) if under the initial conditions

the agents of the economy choose a technology α such that α > α∗, the economy

has long-run growth.

Thus, minimum level of savings, s∗∗(α∗) is needed to achieve long-run growth,

so there may exist a poverty trap.

The productivity of new technologies depends on the savings level and the

productivity of savings depends on the capital intensity of the technology. There-

fore, if savings are small it is not worth to invest in capital intensive technologies

and if the technology is labor intensive the effect of savings on output is small.

Thus, if the initial conditions are such that the technology is labor intensive and

the savings level is small, then the economy can be in a poverty trap. However,

if the initial conditions are such that the savings level is high, then it is optimal

to adopt capital intensive technologies and the effect of savings on output is big.

Thus, if the initial conditions are such that the technology is capital intensive

and the savings level is high, the economy presents long-run growth.

Propositions 1, 2 and 3 tell us that capital abundant economies have incen-

tives to increase α and for these economies any increase in α generates increases

in output and savings, yielding a virtuous cycle of technological change and

economic growth. This process of economic growth may last forever if TFP and

bequests are high and if the cost of capital goods is bounded. The other side of

the story is that when TFP and bequests are not high enough, poor economies

are trapped in a steady state.

In summary, we have presented an OLG model, where any technology can

be adopted paying a cost. Markets are competitive and marginal productivity

of factors determines factor prices. Therefore, innovations affect factors income

share. As a result, the elasticity of output with respect to reproducible factors

and the income share of such factors (physical and human capital) depend on
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the factor abundance of the economies. Under this framework, depending on

the initial conditions, in some economies the production function converges to

AK, while in other economies, long-run growth is zero.

2.4 Dynamics of the model

So far we have presented the model, characterized the steady state and described

the possible equilibrium paths including long-run growth and a poverty trap.

In this section we combine the production function, the savings rate and the

relation between technology and savings to illustrate the dynamics of the model

in a graphical way.

We use the inverse of the function s∗∗(α) to express technology, α, as a

function of savings, α(s).

The production function is given by Y = AKαL1−α. Therefore, if s <

s∗∗(α0), then ∂Y
∂s = α0A (st)

α0−1 and ∂2Y
∂s2 = (α0 − 1)A (st)α0−1 < 0, namely

the function is concave in savings. However, if s > s∗∗(α0), then

∂Y

∂s
= α(.)A (δ(.)st)

α(.)−1 ¡
δ(.) + δ0(.)α0(.)st

¢
+A (δ(.)st)

α(.)
ln(δ(.)st)α

0(.)

Rearranging,

∂Y

∂s
= A (δ(.)st)

α(.)

µ
α(.)

st
+ α0(.)

µ
α(.)

δ0(.)
δ(.)

+ ln(δ(.)st)

¶¶
From equation 6 it follows that α(.) δ

0(.)
δ(.) + ln(δ(.)st), so

∂Y

∂s
= α(.)A (δ(.)st)

α(.)−1 δ(.)

and lim
α→1

∂Y

∂s
= Alim

α→1
δ(.)

Thus, if lim
α→1

δ(.) > 0, then in the long-run, the production function converges

to a linear function of type AK. Therefore, we can plot production and savings

in a graph (see figure 4). The bold line is the production function. It is concave

for low levels of savings and as the savings grow, the slope of the function gets

closer to a constant (Alim
α→1

δ(.)).
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[Insert figure 4 about here]

The savings rate is given by (1 + γ − αt)
³

β
1+β(1+γ)

´
, so if s < s∗∗(α0), it is

constant and if s > s∗∗(α0) it decreases as α grows (see figure 5) and converges

to
³

γβ
1+β(1+γ)

´
as α goes to one.

[Insert figure 5 about here]

Finally, given the behavior of the savings rate, we can plot the level of savings

at time t+1 as a function of the level of savings at time t (see figure 6). When

savings at time t are smaller than s∗∗(α0), savings are a constant proportion

of output (concave). When st > s∗∗(α0), the savings rate decreases as savings

grow, so the growth of savings is slower. However, the savings rate is bounded

from below and in the limit it is equal to γβ
1+β(1+γ) , so as the savings at time

t converge to infinity, the savings rate converge to a constant and the growth

rate of savings becomes equal to the growth rate of output. That is, the slope

of the savings function becomes constant in the long-run. The dashed line in

figure 6 is the 45◦ line, so when the savings function is above the dashed line,

the growth rate of savings is positive and when it is below the dashed line, the

growth rate of savings is negative.

[Insert figure 6 about here]

In figure 6 we observe that depending on the initial level of savings, in some

economies the production function converges to AK, while in other economies,

long-run growth is zero.

3 Discussion

3.1 The relative price of capital goods

In the previous section we assumed that the representative agent uses her savings

to build a capital good and chooses the quality of the capital good maximizing

her utility. We can also assume that agents give their savings to a capital good

producer and receive a capital good of the desired quality. According to our
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model, the price of a capital good which has embodied technology α would be

given by,

p =
1

δ(α)

So, the price of a capital good depends positively on the capital intensity of

the technology. Therefore, as an economy grows and uses more capital intensive

technologies, the relative price of capital good augments. This result contrasts

with the empirical evidence. Indeed, the relative price of capital goods has not

an increasing trend but very much the opposite, it has decreased in the last few

decades. One possible explanation for this contradiction is that the productivity

in the production of capital goods has increased, moving up the function δ(α)

and reducing the relative price of capital for every quality. If this were the case,

the price of capital goods of higher qualities would be higher, but the relative

price of the capital goods with respect to the consumption good would not grow

with the stage of development.

Modelling changes in productivity in the production of capital goods goes

beyond the aim of this paper. However, these changes have important impli-

cation for the model we are considering. In particular, if the production of

capital goods experiences a positive shock in productivity, then the price of

capital goods decreases. Therefore, a higher α can be obtained without paying

additional costs.

In the next subsection we consider the possibility of positive cost-less shocks

in technology. This would be the case of a developing economy, where agents

take the price of capital goods as given and experience an exogenous decrease

in such prices. We model this shock assuming that a more capital intensive

technology is available but δ(.) remains constant. For simplicity we take δ(.) = 1.
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3.2 Exogenous shocks, factor prices and savings

3.2.1 Factor Prices

The choice of capital intensive technologies is made by the elderly. If there is

no coordination among the elderly, the firms take the wage as given and decide

on the technology. In this case they increase capital intensity only if the capital

labor ratio is higher than one (s > 1). If it is lower than one, an increase

in α reduces the output and, given the wage, reduces also the capital income.

However, even if the capital labor ratio is higher than one, the effect of new

technologies may reduce workers income.

Taking logs and derivatives in equation 4 we can find the effect that a change

in α has on the wage and on the interest rate,

∂ lnwt

∂αt
= − 1

1− αt
+ ln(st) (11)

∂ ln rt
∂αt

=
1

αt
+ ln(st) (12)

Therefore, if st > e−
1

1−αt , an exogenous increase in the capital intensity

of the technology generates an augment in wages and if st > e−
1
αt , an exoge-

nous increase in the capital intensity of the technology generates an augment in

interest rates.

The intuition behind the previous results can be better understood consid-

ering the effects of an increase in α one by one: (i) an increase in α positively

(negatively) affects output, whenever the capital labor ratio is greater (smaller)

than one (st > 1); (ii) an increase in α augments the capital income share; (iii)

an increase in α reduces the labor income share; and (iv) the higher the capital

labor ratio, the higher the effect that an increase in α has on output.

The wage is the product of labor income share and output. Therefore, from

(i) and (ii), if the capital labor ratio is lower than one, any increase in α reduces

wages. If the capital labor ratio is higher than one, the effect that an increase in

α has on the wages can be positive (negative) if the increase in output is bigger

(lower) than the decrease in the labor income share. From (iv) it follows that

the effect that an increase in α has on the wages can only be positive when the

savings level is very high.
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The interest rate is the product of capital income share and output. There-

fore, if the capital labor ratio is higher than one, any increase in α increases

interest rates. If the capital labor ratio is lower than one, the effect that an

increase in α has on the interest rate can be positive (negative) if the decrease

in output is smaller (bigger) than the increase in the capital income share. From

(iv), it follows that an increase in α can only reduce the interest rate when the

savings level is very low.

In summary, it is clear that technology affects output and income distri-

bution. Since the choice of technologies is made by the capital owners, the

chosen technology is not likely to be the one that maximizes output or eco-

nomic growth. This fact may have interesting implications for economic policy.

However, a more complex setting with more dimensions of heterogeneity would

be needed to propose serious policy recommendations.

3.2.2 Savings

Young people’s income has two components, wages and bequests. On the one

hand, any change in technology that increases capital income also increases the

bequest. On the other hand, we know that an increase in α may increase or

decrease wages depending on the level of savings per worker. Thus, the net effect

of a change in technology on capital accumulation can be positive or negative.

To find the effect that an exogenous shock in the capital intensity has on future

savings, we take logs and derivatives in equation 9 (assuming δ(.) = 1),

∂ ln(st+1)

∂αt
= − 1

1 + γ − αt
+ ln (st) (13)

and define the function s∗(α) by the equality s∗(α) = e−
1

1+γ−αt . Therefore,

the result in equation 13 can be summarized in proposition 4.

Proposition 4 For any α there exists a minimum amount of savings s∗(α),

such that for any st > s∗(α) an exogenous increase in current α generates an

increase in future savings and any st < s∗(α) an exogenous increase in current

α generates a decrease in future savings
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To have a better intuition of the previous results, consider the effect that an

increase in α has on wages and bequests. The bequest is the product of capital

income share, output and the parameter γ. Therefore, if the capital labor ratio

is greater than one, any increase in α increases the bequest. Now, recall that

the effect of a technological change on the wage can be positive or negative

depending on the capital labor ratio. Since the components of the income of

a young person are the wage and the bequest, the net result of an increase

in α depends on the capital labor ratio (s); if it is very high, both the wage

and the bequest increase when a more capital intensive technology is adopted

and, by the same token, the income of young people as well as their savings

increase. If the capital labor ratio is not high enough, wages decrease and the

income of young people can increase or decrease depending on the behavior of

the bequests.

Finally, using proposition 4 and the fact that whenever the capital labor

ratio is higher than one, the elderly have incentives to adopt capital intensive

technologies, Proposition 5 follows directly:

Proposition 5 Given α, if s∗(αt−1) > st > 1 then: (i) Capital owners have

incentives to invest in new technologies, that is, increase α and (ii) any increase

in α reduces future savings.

Therefore, for some economies, agents choose to adopt more capital intensive

technologies and, as a result, savings decrease as well as the incentives to further

technological change. In these economies, the technological change leads to a

reduction in future per capita income.

4 A numerical example

In this section we consider an explicit functional form for the cost of technologies

and run some simulations for different parameter values in order to illustrate

the dynamics of the model in a comprehensive way. We choose the function

δ(α) = min[1, φ(χ − α)] so, by equation 6 the relation between savings and

technology is given by s∗∗(α) = e
− α
φ(χ−α)

φ(χ−α) . Therefore, given the initial level of
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savings, we get the technology, and consequently the output, wages, bequests

and savings for the next period. In other words, with the parameters of the

model and the initial level of savings we can describe the dynamics of the system.

Table 1 presents eight scenarios with different parameter values (in all of

them we assume β = 1). In the first four scenarios we take the same values

for all parameters but for TFP (α0 = 0.2, γ = 0.8, χ = 2.4, φ = 0.5). In

scenarios 5 to 8, we assume different parameters for the function δ(α) and the

given technology (α0 = 0.1, χ = 5.33, φ = 1.5) and allow for changes in both

TFP (A) and the preference for bequests (γ). In scenarios 5 and 6 we keep TFP

constant (A = 3.15) but change the preference for bequests (γ). In scenarios 7

and 8 we change both A and γ.

[Insert Table 1 about here]

Table 2 presents the main results of the simulations. Column 1 contains

the minimum level of savings, such that the agents have incentives to invest in

technologies better than α0. Columns 2 and 3 show the steady state levels of

savings and technology and columns 4 and 5 show the minimum levels of savings

and technology needed to achieve long-run growth.

In scenarios 1, 2 and 5 there exists a steady state but also the possibility

for long-run growth if the initial level of savings is high enough (s > sss (α
∗)),

namely, there is a poverty trap (see Proposition 3). In scenarios 3, 6 and 7

there exists a unique steady state and there is no possibility for long-run growth

( lim
α→1

δ (α) < 1
A
1+β(1+γ)

γβ ). Finally, in scenarios 3 and 7 there is no steady state

and every economy presents long-run growth independently of the initial condi-

tions (A > A∗∗).

The main conclusions of these simulations confirm what we found in the

previous section: (i) the possibility of long-run growth depends on the levels

of TFP and bequests, (ii) increasing TFP reduces the maximum amount of

savings leading to a poverty trap and eventually may eliminate the trap, and

(iii) increasing the bequest reduces the maximum amount of savings leading to

a poverty trap and eventually may eliminate the trap.
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[Insert Table 2 about here]

To see how the initial level of savings can affect the path of the economy,

we take scenario 5 and simulate the dynamics using different initial levels of

savings.

[Insert Figures 7 to 10 about here]

Figure 7 relates the technology αt with the change in savings, st+1 − st.

Since there exists a unique relation between αt and st, this plot can be done

with s instead of α. In any case, from the figure it follows that:

(i) In economies where the initial conditions are such that α0 = 0.576 (s0 =

2.5), the growth of savings is zero, so these economies are in a steady state.

(ii) In economies where the initial conditions are such that α0 < 0.576

(s0 < 2.5), the growth of savings is positive but decreasing, so these economies

converge to a steady state.

(iii) In economies where the initial conditions are such that 0.576 < α0 <

0.815 (2.5 < s0 < 3.12), the growth of savings is negative, so these economies

converge to a steady state.

(iv) In economies where the initial conditions are such that 0.815 < α0

(3.12 < s0), the growth of savings is positive and increasing, so these economies

present long-run growth.

Figures 8 to 9 show simulations of the dynamics of output, wages, bequests

and savings, starting from the conditions described in (ii), (iii) and (iv) -time

in the horizontal ax-. Figure 8 shows the behavior of output, wages, bequests

and savings when s0 = 1.6. In this case, output and bequests grow while

wages decrease. The former effect is bigger than the latter, so savings grow

and technology becomes more capital intensive. However, the rate of change

of the different variables is reduced period by period, until the point where the

economy achieves a steady state.

Figure 9 shows the behavior of output, wages, bequests and savings when

s0 = 2.6. In this case, output and bequests decrease while wages grow. The

former effect is bigger than the latter, so savings decrease and technology be-
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comes more labor intensive. Again, the rate of change of the different variables

is reduced period by period until the point where the economy achieves a steady

state.

Figure 10 shows the behavior of output, wages, bequests and savings when

s0 = 3.2. In this case output and bequests grow while wages decrease. The

former effect is bigger than the latter, so savings grow and technology becomes

more capital intensive. Finally, the change of the different variables is increasing

period by period, so the economy presents long-run growth.

5 Conclusions

Traditionally, growth theory considers innovations as changes in TFP. Here we

consider the possibility of changing the factor intensity of the technology. Using

this framework, we find that capital abundant countries have incentives to make

labor-saving innovations, while labor abundant economies do not have incentives

to innovate.

If TFP and bequests are high enough, increases in capital share raise the

future capital labor ratio. As the capital labor ratio increases, α grows too.

Thus, for initially capital abundant economies, both the capital labor ratio

and the capital share grow. Depending on the cost of new technologies the

production function of these economies may converge to AK, so they can have

permanent growth even without changes in TFP. If bequests and TFP are small,

there is no possibility of long-run growth because technological change reduces

wages and capital accumulation.

For economies where the capital labor ratio is low, there are no incentives

to innovate. Nevertheless, if their steady sate capital is high enough, at some

moment in the future the incentives to change technology appear. Depending

on the TFP and bequests, these economies can be trapped in a steady state or

can reach a capital labor ratio high enough to start making innovations.

Labor-saving innovations affect output and income distribution. Since the

choice of technologies is made by the capital owners, the chosen technology is
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not likely to be the one that maximizes output or economic growth. Indeed,

some innovations reduce labor income as well as savings and, as a consequence,

economic growth decreases. This fact may have implications for economic policy.

However, a more complex model, with more dimensions of heterogeneity, would

be needed to propose serious policy recommendations.

The model we have presented here is a simplification that helps to identify

some of the implication of capital-using and labor-saving of innovations. For fu-

ture research it can be interesting to analyze the effects of these innovations in a

setting where assets are randomly distributed among agents and workers can be

capital owners. Other extension can be related to the fiscal policy implications

of this type of technological change.
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Tables and Figures

Table 1: Parameters

α0 γ A χ φ

Scenario 1 0.2 0.8 2.8 2.4 0.5

Scenario 2 0.2 0.8 3.2 2.4 0.5

Scenario 3 0.2 0.8 2.0 2.4 0.5

Scenario 4 0.2 0.8 5.0 2.4 0.5

Scenario 5 0.1 0.8 3.15 5.33 0.15

Scenario 6 0.1 0.5 3.15 5.33 0.15

Scenario 7 0.1 0.5 3.5 5.33 0.15

Scenario 8 0.1 0.65 4.0 5.33 0.15

Table 2: Results

s∗∗(α0) sss(αss) αss sss (α
∗) α∗

Scenario 1 1.11 2.6 0.56 199 0.998

Scenario 2 1.11 4.5 0.69 62 0.951

Scenario 3 1.11 1.3 0.30 - -

Scenario 4 1.1 - - - -

Scenario 5 1.69 2.50 0.576 3.12 0.815

Scenario 6 1.69 1.821 0.199 - -

Scenario 7 1.69 2.013 0.323 - -

Scenario 8 1.69 - - - -
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