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Abstract

We consider a class of models which share with the Pilipović’s model
of electricity prices the property of having a hidden stochastic drift. We
show that under certain assumptions, the model parameters can be esti-
mated using the method of moments. The ergodic properties of the model
allow us to introduce an important condition derived from actual market
operations: price caps.
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1 Introduction

Energy prices have proved to be very difficult to model. There are several reason
for this. For example, observed price series not only have high variations within
the same day, but also show high regional variations within relatively small
geographical areas. Prices also exhibit extreme spikes, which are not consistent
with the usual modeling via diffusion processes. Another of the problem is that
energy prices exhibit significantly greater volatility than in other markets, such
as those for stocks or bonds. It is even possible for prices to be zero or negative
at times, although this is very rare.

One important characteristic of energy prices is their tendency to revert to
a mean level within a time scale of days, or at most weeks. In 1998 Pilipović
introduced a model that accounts for at least some of the economics of electricity
pricing (see [Pil98]). It is written as follows

dSt =ρ(Lt − St) dt+ σSt dBt

dLt =µLt dt+ νLt dWt

}
.
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Here, St refers to the spot price, whereas Lt is an unobserved variable which
represents a long-term (stochastic) equilibrium price. The Bt,Wt terms denote
independent Brownian motions. The equilibrium price Lt satisfies a geometric
Brownian motion (exponential growth subject to noise), with µ its growth rate
and ν its volatility. The process St reverts to the level Lt at the rate ρ, with
volatility σ.

Other diffusion-based models for electricity prices include those by Lucia and
Schwartz (2002) (see [LS02]) and Barlow (2002) (see [Bar02]). See also [LLSW]
where the authors review one-factor, two-factors and three-factors models.

Another behaviour exhibited by some energy markets is the existence of price
caps. These are limits on prices introduced by electricity market regulators,
which modify the “real” price arising from the clearing process to a maximum
allowed price, whenever the clearing price is higher than the allowed maximum.

Using Pilipović’s model as an example, what this means is that instead of
observing St, what we really observe is min(St, Smax). Smax is the cap imposed
by regulatory authorities. The problem in this case is that the mean price
grows exponentially fast. Therefore, as time evolves, the cap is in effect for
longer periods of time. In other words, Pilipović’s model is not consistent with
the existence of a price cap. For such a model, the cap should be expressed in
terms of quantiles of the price distribution, as opposed to being fixed.

It is not our main goal to propose a new model that improves the existing
ones, but instead to study the ergodic properties of a model which is consistent
with the existence of a price cap in the market. In in this paper we consider
a class of models which share with Pilipović’s model the property of having a
hidden stochastic equilibrium state. Under certain assumptions, the model is
stationary, and its parameters can be estimated using the method of moments.
The ergodic properties of that model allow us to introduce a price cap.

More precisely, we consider the stochastic processes introduced in [Sau01]
and defined as the solution to the following equations:

dYt =ρ(Vt − Yt)dt+ σ dBt

dVt =b(Vt; θ)dt+ a(Vt; θ) dWt

Xt =min(Yt,M)

 ,

where ρ, σ > 0, θ is a vector of parameters of the non-observable process, B
and W are a two independent standard Brownian motions, and M is a known
constant. We interpret Yt and M as the logarithm of the spot price and the cap
respectively (that is, Yt = lnSt and M = lnSmax). As in Pilipović’s model, Vt

represents a stochastic equilibrium (log)-price.
We want to point out that Pilipović’s model and the model proposed here

should be fairly similar over not too long periods of time. For long periods
of time, the behavior of both models is very different. This is due to the fact
mentioned before that Pilipović’s model grows in time, while one important
feature of our model is its stationarity. Pilipović’s model is an inflationary
model, better suited for modeling prices quoted in nominal terms. Our model
is more appropriate for prices already corrected for inflation.
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Another observation is that, in contrast to what occurs with the prices of
natural gas, the existence of a cap should nor affect the model for the log-
price Y . The reason for this is that electricity prices are set by an auction
mechanism. The quoted price depends on the demand at any time, and the
maximum amongst the costs given by all the suppliers: hydro plants, nuclear
plants, natural gas plants, etc. Finally, through a rebate process, the effective
price is a function of the mean generation cost, instead of the maximum. This
mechanism makes the behavior of the “uncapped price” independent of the value
of the cap.

The main goal of this paper is to use the Ergodic Theorem to justify the
Method of Moments for the estimation of the parameters. The general idea
is to assume stationary and ergodic properties for the hidden process V , and
from those to induce the ergodic properties of Y first, and of the observable
process X afterward. Once we have established the ergodicity of Y and X, the
next practical problem for estimation purposes is to compute explicitly their
moments.

Since V is a one-dimensional diffusion, its ergodic properties have been well
studied. Moreover, for some particular choices of its drift and volatility, the
moments can be found explicitly. It is easy to show that X is ergodic if Y
is. Hence, the difficult problems are to obtain the ergodicity of Y from the
ergodicity of V , and to compute the moments of Y once we know the moments
of V . We were able to solve both problems by a discretization, followed by
suitable passages to the limit.

In [GCJL00] the ergodic properties of models of the form:

dYt =µ(σ2
t ) dt+ σt dBt

d(σ2
t ) =b(σ2

t ) dt+ a(σ2
t ) dWt

}

are studied. Here µ, a and b are real functions satisfying some technical condi-
tions. For example, the choice µ(v) =

(
m− v

2

)
, a(v) = ν

√
v, and b(v) = α(β−v),

is the celebrated Heston model (see [Hes93]). Defining a convenient Hidden
Markov Model (see Appendix A), the authors show that if σ2 is ergodic, then
the difference process Zn = Y(n+1)h − Ynh is ergodic for a discretization of any
step size h.

In [Sau01] the same model we are considering here was introduced, except
for the price cap. Using similar ideas as in [GCJL00], the author also showed
that the discrete process

Zn = Y(n+1)h − e−ρhYnh

is ergodic for any step size h. Our idea was then to take the limit as h → 0 to
obtain the ergodicity of the continuous-time process Y . A very similar passage
to the limit has been done before in [GIY04] for regime switching models, which
are slightly simpler.

Finally, we realized that taking the limit h→∞ instead, the exact moments
of Y can be obtained from the exact moments of Z, which in turn can be
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computed from the moments of V . We would like to point out that taking the
limit h→∞ is a rather unusual direction to take, but it yields useful results.

In Section 2 we define the model without the cap, and describe all the
technical conditions we are going to assume through the paper. In Section 3 we
establish the ergodicity not only of Z, but also of any discretization (Ynh)n∈N of
Y . In that same section we also obtain some explicit bounds for the moments
that will be needed later. In Section 4 we make h→ 0 and obtain the ergodicity
of the continuous-time process Y . In Section 5 we show how making h → ∞
we can obtain the moments and auto-covariance of Y if we know those for Z.
In Section 6 we introduce some explicit forms for the drift and volatility of
V and compute the moments of Y explicitly in those examples. In Section 7
we introduce the price cap and explain how to use the Method of Moments to
construct estimators. In Section 8 we give some numerical examples through
simulations. Finally, in Appendix A we recall the definitions and properties of
mixing coefficients and Hidden Markov Models (HMM).

2 A Stochastic Drift Model

Let (Ω,F , (Ft)t∈R+ ,P) be a stochastic basis satisfying the usual hypotheses that
supports a standard two-dimensional Brownian motion (Bt,Wt)t∈R+ .

Let ρ, σ > 0 be two constants, and θ ∈ Θ ⊂ Rp be a vector of real parameters,
for some p ∈ R. Consider also an interval (l, r) with −∞ ≤ l < r ≤ ∞, and two
functions a, b : (l, r)×Θ → R satisfying the following assumption

Assumption 1. For every θ ∈ Θ fixed, the functions a(·; θ) and b(·; θ) are twice
continuously differentiable, and there exist constants q ≥ 1

2 , Kθ > 1 such that:

|a(u; θ)− a(v; θ)| ≤ Kθ|u− v|q ∀u, v ∈ (l, r),
|b(u; θ)− b(v; θ)| ≤ Kθ|u− v| ∀u, v ∈ (l, r),

and a2(u; θ) + b2(u; θ) ≤ Kθ(1 + u2) ∀u ∈ (l, r).

Given two F0-measurable random variables Y0 and V0, both independent of
(B,W ), define the process (Y, V ) = (Yt, Vt)t∈R+ as the solution of the stochastic
differential equation

dYt =ρ(Vt − Yt)dt+ σ dBt

dVt =b(Vt; θ)dt+ a(Vt; θ) dWt

}
. (1)

Assumption 1 ensures the existence and uniqueness of such a solution. Notice
that for the volatility, we need the Hölder condition instead of the Lipschitz
condition. This will allow us to consider cases as the CIR-drift model (see
Section 6) via the Yamada-Watanabe Theorem. For all the above mentioned
existence and uniqueness results we refer to [RW00].

Furthermore, we will make the following two assumptions.

4



Assumption 2. For a fixed v0 ∈ (l, r), consider the function

s(v) = exp

(
− 2

∫ v

v0

b(u)
a2(u)

du

)

defined for all v ∈ R. We assume that
∫ r
s(u) du =

∫
l
s(u) du = ∞, and that

M =
∫ r

l
du

a2(u)s(u) <∞.

Assumption 3. V0 has distribution π̃(u) du, where π̃(u) = 1
Ma2(u)s(u)1(l,r)(u).

The following result can be found in [GCJL00].

Proposition 2.1. Under Assumptions 1-3, the process V is strictly stationary
and time reversible. Furthermore, the continuous-time process (Vt)t∈R+ and any
of its discrete-time samplings (Vnh)n∈N are β-mixing, and hence also α-mixing
and ergodic.

We need to make another two assumptions in order to obtain the ergodicity
of the process Y .

Assumption 4. For some p > 1 we have that E|V0|p <∞.

We will see in Section 4 that the previous four assumptions implies the
existence of a unique stationary distribution for the process Y . With that in
mind, our last assumption makes sense.

Assumption 5. Y0 follows the unique stationary distribution implied by the
model (1) under Assumptions 1-4

We will see in Theorem 4.2, the main result of this paper, that under As-
sumptions 1-5 the observable process Y is strictly stationary and ergodic.

3 The discretized Model

If Assumptions 1-4 hold, then there exits a constant β such that EVt = β for
every t ≥ 0. From now on we will denote:

yt = Yt − β, and vt = Vt − β.

It is easy to verify that Assumptions 1-4 hold for the processes V = (Vt)t≥0 if
and only if they hold for the process v = (vt)t≥0.

Proposition 3.1. Fix h ≥ 0. For any t ≥ 0 we can write:

yt+h = e−ρhyt + Z
(h)
t , (2)

with Z
(h)
t = µt(h) + Γ(h)ξ(h)

t , (3)
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where

µt(h) = e−ρh

∫ h

0

ρeρuvt+u du, (4)

Γ2(h) =
σ2

2ρ
(1− e−2ρh), (5)

and ξ
(h)
t ∼ N(0, 1).

Moreover, if we define Gt = σ(Vs; s ≤ t) = σ(vs; s ≤ t) ⊂ Ft, then µt(h) is
Gt+h-measurable, ξ(h)

t is independent of G = (Gu)u≥0, and ξ
(h)
t is independent

of ξ(h)
s whenever |t− s| ≥ h. Notice also that EZ(h)

t = Eµt(h) = 0.

Proof. Applying Itô’s Lemma to eρt(Yt − β) we obtain

yt+h = e−ρhyt +
∫ t+h

t

e−ρ(t+h−s)[ρ(Vs − β) ds+ σ dBs].

Hence we have (2) where

Z
(h)
t =

∫ t+h

t

ρe−ρ(t+h−s)vs ds+
∫ t+h

t

σe−ρ(t+h−s) dBs.

The first integral is just (4) after a change of variable. The second integral is a
Gaussian random variable with variance∫ t+h

t

σ2e−2ρ(t+h−s) ds = Γ2(h).

so it can be written as Γ(h)ξ(h)
t with ξ(h)

t ∼ N(0, 1). Notice that since the Brow-
nian B is independent of V , and hence of G, we have that ξ(h)

t is independent
of G. Also, since B has independent increments, two integrals with respect to
dB are independents if the integration intervals do not overlap. Therefore ξ(h)

t

is independent of ξ(h)
s whenever |t− s| ≥ h.

Finally, Eµt(h) = 0 since Evt = E(Vt − β) = 0 for every t.

If for a fixed h > 0 we define the two discrete-time processes y(h) = (ynh)n∈N

and z(h) = (Z(h)
nh )n∈N, then (2) can be rewritten as

y
(h)
n+1 = e−ρhy(h)

n + z(h)
n n ∈ N, (6)

with z(h)
n = µnh(h) + Γ(h)ξn. (7)

Here (ξn)n∈N is an i.i.d. sequence of standard Gaussian random variables, each
independent of the sequence (µnh(h))n∈N.

We are interested in the ergodic properties of the discrete-time processes
y(h) defined by this equation and the initial state y(h)

n = y0. The first step is to
establish the ergodic properties of z(h). The following result is due to [Sau01].
We repeat the proof here for the sake of completeness, and also because our
notation is very different.
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Theorem 3.2. The process z(h) is a HMM (see Appendix A) with hidden chain
U (h) = (U (h)

n )n∈N which takes values on R2, defined by U (h)
n = (µnh(h), V(n+1)h).

Proof. Denote Un = U
(h)
n and zn = z

(h)
n to simplify the notation. Denote by

CR([0, h]) the space of all the continuous functions ξ : [0, h] → R endowed with
the topology of uniform convergence. If we define the process S = (Sn)n∈N with
values on CR([0, h]) as Sn = (Vnh+u)u∈[0,h], and the function F : CR([0, h]) → R2

F (ξ) =
(
e−ρh

∫ h

0

ρeρu[ξ(u)− β] du, ξ(h)
)
,

then Un = F (Sn). The strict stationarity of V implies that of S, and since F is
continuous, then U is also strictly stationary.

Next, for any bounded Borel-measurable function ϕ : R2 → R define the op-
erator Tϕ(x) = E[ϕ(U0)|V0 = x]. Using the strict stationarity and the Markov
property for V we can verify that

E[ϕ(Un)|U0, . . . , Un−1] = E
[
E[ϕ(Un)|Gnh]

∣∣U0, . . . , Un−1

]
=E
[
E[ϕ(Un)|Vnh]

∣∣∣U0, . . . , Un−1

]
= E[Tϕ(Vnh)|U0, . . . , Un−1]

=E[Tϕ(Vnh)|Un−1] = Tϕ(Vnh).

This shows that

E[ϕ(Un)|U0, . . . , Un−1] = E[ϕ(Un)|Un−1] = Tϕ(Vnh), (8)

and therefore U is a Markov process.
Finally, using Proposition 3.1 we have that for any real numbers c0, . . . , cn

E
[
exp

( n∑
k=0

ickzk

)∣∣∣U0, . . . , Un

]
= E

[
E
[
exp

( n∑
k=0

ickzk

)∣∣G(n+1)h

]∣∣∣U0, . . . , Un

]
=E
[ n∏

k=0

exp
(
ickµkh(h)− 1

2
c2kΓ2(h)

)∣∣∣U0, . . . , Un

]
=

n∏
k=0

exp
(
ickµkh(h)− 1

2
c2kΓ2(h)

)
.

This provides all the conditions needed by the definition of an HMM.

Lemma 3.3. We have that cU(h)(n) ≤ cV ((n− 1)h) for c = α, β or ρ. Hence,
if (Vnh)n∈N is c-mixing, then U (h) is also c-mixing.

Proof. We are going to exploit the fact that, from the previous proof, we have
U

(h)
n = F (Sn), where Sn = (Vnh+u)u∈[0,h] and F is some continuous function.

Then

cU(h)(n) = c
(
σ(U (h)

0 ), σ(U (h)
n )

)
= c
(
σ(F (S0)), σ(F (Sn))

)
≤ c
(
σ(Vs; s ≤ h), σ(Vs; s ≥ nh)

)
= cV ((n− 1)h),

and the proof is complete.
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By Proposition 2.1 and the previous lemma, U (h) is β-mixing, and hence
α-mixing and ergodic. Finally, applying Proposition A.2 we get

Theorem 3.4. z(h) is a strictly stationary α-mixing process, and hence ergodic.
Moreover, if V is ρ-mixing, so is z(h).

Once we have the strict stationarity and the ergodicity of z(h), the next
result is only a rephrase of Theorem 1 in [Bra86b] with our present notation.
We need first to extend by stationarity the process

(
z
(h)
n

)
n∈N to n ∈ Z.

Theorem 3.5. Fix h > 0 and consider the equation

xn+1 = e−ρhxn + z(h)
n n ∈ Z. (9)

If for any h > 0 the following condition holds

E max(0, ln |z(h)
0 |) <∞ (10)

then the only stationary solution of (9) is

xn =
∞∑

k=1

e−(k−1)ρhz
(h)
n−k n ∈ Z, (11)

where the sum on the right-hand side converges absolutely a.s. Furthermore,
denote by π(h) the distribution law of this stationary solution, and let ξ be any
F0-measurable random variable. Then the solution of (9) for n ∈ N and y0 = ξ
satisfies

xn
L−→ π(h) as n→∞.

Comparing (9) with (6) we obtain as a corollary the most important result
of this section.

Theorem 3.6. If for any given h > 0 condition (10) holds, then there exist a
unique distribution law π(h) such that for any F0-measurable random variable
y0, the discrete-time process y(h) defined by (6) satisfies:

y(h)
n

L−→ π(h) as n→∞. (12)

Moreover, if we take y0 ∼ π(h), then y(h) is strictly stationary.

The following proposition shows that taking into account Assumption 4,
condition (10) automatically holds. It also gives us a uniform limit condition
when h→ 0 that we will need in the next section.

Proposition 3.7. If Assumptions 1-4 hold, then

(i) for any h > 0 condition (10) holds, and

(ii) for any x > 0 we have the following limit uniformly in s ≥ 0:

lim
h→0

P[|Z(h)
s | ≥ x] = 0.
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The proof will make use of the following lemma, that bounds the moments
of µt(h) from the bounds of the moments of the process V .

Lemma 3.8. Let µt(h) be defined as in (4). If Assumptions 1-4 hold, then for
any 1 ≤ r ≤ p we have that

E|µt(h)|r ≤ (1− e−ρh)rE|v0|r ≤ E|v0|p <∞ ∀t, h ≤ 0.

Proof. Define the measure η on R as

η(du) = 1[0,h](u)
ρe−ρ(h−u)

1− e−ρh
du.

Then

µt(h) = e−ρh

∫ h

0

ρeρuvt+u du,= (1− e−ρh)
∫

R
vt+u η(du),

and clearly
∫

R η(ds) = 1. By Jensen’s inequality∣∣∣ ∫
R
vt+u η(du)

∣∣∣r ≤ ∫
R
|vt+u|r η(du).

The stationarity of v implies that E|vs|r = E|v0|r for all s ∈ R+, hence

E|µt(h)|r = (1− e−ρh)rE
∣∣∣ ∫

R
vt+u η(du)

∣∣∣r ≤ (1− e−ρh)r

∫ h

0

E|vt+u|r η(du)

= (1− e−ρh)rE|v0|r
∫

R

η(du) = (1− e−ρh)rE|v0|r ≤ E|v0|p.

Minkowski’s inequality then finishes the proof:

(E|v0|p)
1
p = (E|V0 − β|p)

1
p ≤ (E|V0|p)

1
p + |β| <∞,

due to Assumption 4.

Proof of Proposition 3.7. Using Minkowski’s inequality and the previous Lemma(
E|Z(h)

t |r
) 1

r ≤
(
E|µt(h)|r

) 1
r +

(
E|Γ(h)ξ(h)

t |r
) 1

r

≤ (1− e−ρh)
(
E|v0|r

) 1
r + Γ(h)

(
E|ξ(h)

t |r
) 1

r .

Since limh→0 Γ(h) = 0, this clearly implies that limh→0 E|Z(h)
s |r = 0 uniformly

in s ≥ 0. From Markov’s inequality, condition (ii) follows immediately. Also

E|Z(h)
t |r ≤

[(
E|v0|r

) 1
r +

σ2

2ρ
Kr

]r
<∞,

where Kr =
(
E|ξ(h)

t |r
) 1

r is a constant. Since max(0, ln |x|) ≤ |x|, then

E(ln |z(h)
0 |)+ ≤ E|z(h)

0 | = E|Z(h)
0 | <∞.

and condition (i) follows.
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Corollary 3.9. For any r such that 1 ≤ r ≤ p there exist a constant cr that
does not depend on h or t such that

E|Z(h)
t |r ≤ cr <∞ ∀t ∈ R, h > 0.

4 Ergodicity of the continuous-time process Y

The idea now is to take the limit as h → 0 in Theorem 3.6, with the goal
of obtaining the ergodicity of the continuous-time version of the process Y ,
or equivalently, the process y = Y − β. The proof of the following Theorem
is heavily inspired on the results found in [GIY04]. We only needed a few
refinements in order to adapt it to our present case.

Theorem 4.1. If Assumptions 1-4 hold, then there exists a unique probabil-
ity measure π0 in R such that if y0 ∼ π0, then the continuous-time process
(yt)t∈R+ and any of its discrete-time samplings (ynh)n∈N are strictly stationary
and ergodic.

Proof. First notice that we can make use of (i) and (ii) from Proposition 3.7. Let
y0 be any F0-measurable random variable. Consider m,m′ ∈ N such that m ≤
m′. If h = 2−m and h′ = 2−m′

, then the sequence (ynh)n∈N is embedded in the
sequence (ynh′)n∈N. Using (i) and Theorem 3.6 we have that the corresponding
stationary laws have to be the same, that is, π(h′) = π(h). Therefore, we can
denote by π0 the common limit distribution for every h of the form h = 2−m.

Fix ε > 0, and choose Kε such that π0[|x| ≥ Kε] ≤ ε
2 . Let s ≥ 0 and h > 0.

From (2) we have that

ys+h − ys = (e−ρh − 1)ys + Z(h)
s .

Then

P[|ys+h − ys| ≥ ε] ≤P
[∣∣(e−ρh − 1)ys

∣∣ ≥ ε

2

]
+ P

[∣∣Z(h)
s

∣∣ ≥ ε

2

]
=P
[∣∣ys

∣∣ ≥ ε

2(e−ρh − 1)

]
+ P

[∣∣Z(h)
s

∣∣ ≥ ε

2

]
Using that (e−ρh− 1) → 0 as h→ 0 and condition (ii), we can choose ∆ = 2−m

independently of s such that

P[|ys+h − ys| ≥ ε] ≤ P
[∣∣ys

∣∣ ≥ Kε

]
+
ε

2
∀h ≤ ∆. (13)

Now, for any t ≥ 0 denote by s∆(t) the largest multiple of ∆ smaller than t.
Then s∆(t) < t ≤ s∆(t) + ∆ and h = t− s∆(t) ≤ ∆. By (13)

P[|yh − ys∆(t)| ≥ ε] ≤ ε

2
+ P

[∣∣ys∆(t)

∣∣ ≥ Kε

]
.

Making t→∞ and using (12) we obtain

lim sup
t→∞

P[|yt − ys∆(t)| ≥ ε] ≤ ε

2
+ π0[|x| ≥ Kε] ≤

ε

2
+
ε

2
= ε.
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The next part of the proof follows exactly as in [GIY04]. Let C(π0) be the
sets of continuity points of the distribution function F0(x) = π0[(−∞, x]]. Let
x ∈ C(π0) and choose ε > 0 such that x± ε ∈ C(π0). Since

P[yh ≤ x] ≤P[ys∆(t) ≤ x+ ε] + P[|yh − ys∆(t)| ≥ ε],
and P[ys∆(t) ≤ x− ε] ≤P[yh ≤ x] + P[|yh − ys∆(t)| ≥ ε].

then

F0(x− ε)− ε ≤ lim inf
t→∞

P[yh ≤ x] ≤ lim sup
t→∞

P[yh ≤ x] ≤ F0(x+ ε) + ε.

Letting ε → 0 (with x ± ε ∈ C(π0), which is possible since C(π0) is dense and
the complement of a countable set), we obtain

lim
t→∞

P[yh ≤ x] = F0(x) ∀x ∈ C(π0).

Hence for any y0 we have shown that yh
L−→ π0.

Finally, making y0 ∼ π0 and using the strict stationarity of (ynh)n∈N for
every h > 0, it is easy to verify the strict stationarity of (yt)t∈R+ . Since the
stationary distribution is unique, the ergodic decomposition theorem by Krylov
and Bogolioubov (see [KB37], and [Kal97] for a modern proof) implies the er-
godicity of y.

Combining the previous theorem with Assumption 5, we obtain the main
result of this paper.

Theorem 4.2. If Assumptions 1-5 hold, then both components V and Y of the
model defined by model (1) are strictly stationary and ergodic.

5 Exact moments of the stationary model

From this point on we are going to suppose without mention that all Assump-
tions 1-5 hold, and hence the observable component Y of the model is strictly
stationary and ergodic.

For estimation purposes, we need to compute the moments of the observable
component Y exactly. The following result allows us to do that if we know how
to compute the moments of z(h) = (z(h)

n )n∈Z = (Z(h)
nh )n∈Z exactly for any h > 0.

The trick is to take the limit as h → ∞ and to exploit the stationarity of Y .
Note also that stationarity implies that the relations hold for any t ∈ R+.

Theorem 5.1. Assume that 1 ≤ r ≤ p. Then E|Yt|r < ∞ for all t ∈ R+.
Moreover, if k is an integer such that 1 ≤ k ≤ p, then

Eyk
t = E(Yt − β)r = lim

h→∞
E
[
z
(h)
0

]k
. (14)

Furthermore, if p ≥ 2 then for any h > 0 we have that

E[y0yh] = E[(Y0 − β)(Yh − β)] = e−ρhEy2
0 +

∞∑
k=1

e−ρ(k−1)hE
[
z
(h)
0 z

(h)
k

]
. (15)
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Proof. The first step is to make sure that if the p-moment of V exists (As-
sumption 4), then all the moments up to p of y also exist. Fix any h > 0 (for
example, take h = 1). From (11) we have that y0 =

∑∞
k=1 e

−(k−1)ρhz
(h)
−k . Using

the triangular inequality and Corollary 3.9 we have that

(
E|y0|r

) 1
r ≤

∞∑
k=1

(
E|e−(k−1)ρhz

(h)
−k |

r
) 1

r ≤
∞∑

k=1

e−(k−1)ρh
(
cr
) 1

r <∞.

The stationarity of y implies that E|yt|r = E|y0|r <∞ for every t ∈ R+.
If k is an integer such that 1 ≤ k ≤ r, then

E
[
z
(h)
0

]k = E
[
yh − e−ρhy0

]k
=Eyk

h +
k−1∑
i=1

(
k

i

)
E
[
(yh)k−i(e−ρhy0)i

]
+ E

[
e−ρhy0

]k
. (16)

Fix 1 ≤ i ≤ k − 1, and define p = k
k−i and q = k

i . Then by Hölder’s inequality∣∣∣E[(yh)k−ie−ρhy0)i
]∣∣∣ ≤E

[
|yh|k−i|e−ρhy0|i

]
≤
[
E|yh|(k−i)p

] 1
p
[
E|e−ρhy0|iq

] 1
q

=e−ρh k
q
[
E|y0|k

] 1
p
[
E|y0|k

] 1
q = e−ρhiE|y0|k → 0

as h→∞. Finally, taking the limit in (16) we obtain (14).
For the auto-covariance, we can multiply the relation yh = e−ρhy0 + z

(h)
0 by

y0 and take expectations to get

E[y0yh] = e−ρhEy2
0 + E

[
y0z

(h)
0

]
.

From (11) we have that y0 =
∑∞

k=1 e
−(k−1)ρhz

(h)
−k . Then

E
[
y0z

(h)
0

]
=

∞∑
k=1

e−ρ(k−1)hE
[
z
(h)
−kz

(h)
0

]
.

By the strict stationarity of z(h) we have that E
[
z
(h)
−kz

(h)
0

]
= E

[
z
(h)
0 z

(h)
k

]
. If

p ≥ 2, then Corollary 3.9 implies that

2E
∣∣z(h)

0 z
(h)
k

∣∣ ≤ E
∣∣z(h)

0

∣∣2 + E
∣∣z(h)

k

∣∣2 ≤ 2c2,

and hence the series converges absolutely.

6 Exact moments in some examples

In order to compute the first few moments of Y exactly, we need first to specify
the drift a and volatility b of V in (1). From now on we will work with the
following model:

dYt =ρ(Vt − Yt)dt+ σdBt

dVt =α(β − Vt)dt+ νV λ
t dWt

}
(17)
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where α, β, ν > 0. In what follows we will denote κ = ν2

2α .
Specifically, we consider the cases λ = 0, 1

2 , 1.
When λ = 0 the V process in (17) is the Ornstein-Uhlenbeck process. We

shall refer to it as the OU-drift model. The OU-drift model satisfies Assump-
tions 1-3 with (l, r) = (−∞,+∞), and in that case, the stationary distribution
for V is Gaussian with parameters (β, κ).

We refer to the case λ = 1
2 as the CIR-drift model (after [JCR85]). The

CIR-drift model satisfies Assumptions 1-3 with (l, r) = (0,+∞) if β ≥ κ. The
stationary distribution for V is a Gamma with parameters (β

κ ,
1
κ ), which has

finite moments of any order.
The case λ = 1 is the GARCH-drift model (as in this case V is the diffusion

approximation of a GARCH process, see [Nel90]). The GARCH-drift model
satisfies Assumptions 1-3 with (l, r) = (0,+∞), and the stationary distribution
for V is an Inverse Gamma with parameters (1 + 1

κ ,
β
κ ). The moments of order

p are finite if p < 1 + 1
κ .

For the details of the distributions of the CIR-drift and GARCH-drift pro-
cesses, see [GCJL00] (pp. 1072-1073). In Appendix B we give explicit expres-
sions for the moments and auto-covariances of the hidden process V .

It is clear then that once the stationarity Assumption 3 is satisfied, then also
Assumption 4 holds for any p > 1 in the cases λ = 0, 1

2 . In the case λ = 1 we
have that Assumption 4 holds for p = 3 if we assume that κ < 1

2 . Proposition 3.7
and Theorem 4.1 then allows us to also have Assumption 5. From now on, we
are going to suppose that Assumptions 1-5 are all satisfied.

In Lemma B.2 it is shown that EVt = β, hence we can keep the notation
from Section 3

yt = Yt − β, and vt = Vt − β.

Theorem 6.1. If α 6= ρ, then moments of y are given by the following formulas:

Eyt =0,

Ey2
t =

σ2

2ρ
+

M2

1 + α
ρ

,

Ey3
t =

M3(
1 + α

ρ

)(
1 + α

2ρ

) ,
and E[y0yh] =

(σ2

2ρ
+

M2

1 + α
ρ

)
e−ρh +

M2

1− (α
ρ )2

(e−αh − e−ρh), ∀h > 0.

Proof. In view of Theorem 5.1 we first need to compute the moments of z(h).
By Proposition (7) z(h)

t is conditionally Gaussian, hence

E
[
z
(h)
0

]
=E[µ0(h)], (18)

E
[
z
(h)
0

]2 =E[µ0(h)]2 + Γ2(h), (19)

and E
[
z
(h)
0

]3 =E[µ0(h)]3 + 3E[µ0(h)]Γ2(h). (20)

13



Denote im = limh→∞ E[µ0(h)]m for m ∈ N. Clearly i0 = 1. For m ≥ 1 we
can use (4) to get

im = lim
h→∞

E
(
e−ρh

∫ h

0

ρeρsvs ds
)m

.

Using the following identity(∫ h

0

f(s) ds
)m

= m!
∫ h

0

∫ sm

0

· · ·
∫ s2

0

f(s1) · · · f(sm) ds1 · · · dsm,

which can be easily proved by induction, yields

im = m!ρm lim
h→∞

e−mρh

∫ h

0

∫ sm

0

· · ·
∫ s2

0

eρ(s1+···+sm)E[vs1 · · · vsm ] ds1 · · · dsm.

In particular, we are now going to show that

i0 = 1, i1 = 0, i2 =
M2(

1 + α
ρ

) , and i3 =
M3(

1 + α
ρ

)(
1 + α

2ρ

) ,
where M2 and M3 are as in Lemma B.2. Making use of Lemmas B.2 and B.4
we have that

i1 = ρ lim
h→∞

e−ρh

∫ h

0

eρs1E[vs1 ] ds1 = 0

since E[vs1 ] = M1 = 0. For m = 2 we have

i2 = 2!ρ2 lim
h→∞

e−2ρh

∫ h

0

∫ s2

0

eρ(s1+s2)E[vs1vs2 ] ds1ds2

= 2ρ2M2 lim
h→∞

e−2ρh

∫ h

0

∫ s2

0

eρ(s1+s2)e−α(s2−s1) ds1ds2

=
2ρ2M2

(ρ+ α)2ρ
.

And for m = 3 we have

i3 = 3!ρ3 lim
h→∞

e−3ρh

∫ h

0

∫ s3

0

∫ s2

0

eρ(s1+s2+s3)E[vs1vs2vs3 ] ds1ds2ds3

= 6ρ3M3 lim
h→∞

e−3ρh

∫ h

0

∫ s3

0

∫ s2

0

eρ(s1+s2+s3)e−α(s3−s1) ds1ds2ds3

=
6ρ3M3

(ρ+ α)(2ρ+ α)3ρ
.

A little algebra yields the desired expressions. Then, using Theorem 5.1, equa-
tions (18)-(20), the fact that limh→∞ Γ2(h) = σ2

2ρ , and substituting the expres-
sions for i2 and i3 we obtain the first three moments of y.
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For the auto-correlation, we are going to use (15). Let k ≥ 1, then by (7) we
have that E

[
z
(h)
0 z

(h)
k

]
= E[µ0(h)µkh(h)]. Then, by (4) and Lemma B.4 we have

that

E[µ0(h)µkh(h)] =E
[(
e−ρh

∫ h

0

ρeρsvs ds
)
×
(
e−ρh

∫ h

0

ρeρsvkh+s ds
)]

=e−2ρhρ2

∫ h

0

∫ h

0

eρ(s1+s2)E[vs1vkh+s2 ] ds1ds2

=e−2ρhρ2

∫ h

0

∫ h

0

eρ(s1+s2)e−α(kh+s2−s1)M2 ds1ds2

=e−(2ρh+αkh)ρ2M2

∫ h

0

e(ρ+α)s1 ds1 ×
∫ h

0

e(ρ−α)s2 ds2

=
e−(2ρh+αkh)ρ2M2

ρ2 − α2
(e(ρ+α)h − 1)(e(ρ−α)h − 1),

Then we can write E
[
z
(h)
0 z

(h)
kh

]
= E[µ0(h)µkh(h)] = n(h)e−kαh where

n(h) =
M2

1− α2

ρ2

(1− e−(ρ+α)h)(1− e−(ρ−α)h).

Finally, by (15) we have that

E[y0yh] = e−ρhEy2
0 +

∞∑
k=1

e−ρ(k−1)h[m(h) + n(h)e−kαh]

= e−ρhEY 2
0 + n(h)

e−αh

1− e−(ρ+α)h
.

Substituting the expressions of Ey2
0 and n(h) yields the desired result.

7 Price Cap and Estimation

Recall that Yt in the model (1) represents the logarithm of the electricity price
at time t. When a price cap of Smax is introduced, instead of Yt we observe
Xt = min(Yt,M), where M = lnSmax is a known constant (see Figure 1 pp. 19).

Since fM (y) = min(y,M) is a continuous function, the ergodicity of Y triv-
ially implies the ergodicity of X. Hence, the following Theorem is really a
corollary of Theorem 4.2.

Theorem 7.1. Assume that the following model

dYt =ρ(Vt − Yt)dt+ σdBt

dVt =b(Vt; θ)dt+ a(Vt; θ)dWt

Xt =min(Yt,M)

 (21)
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satisfies Assumptions 1-5. Then X is a strictly stationary and ergodic process.
Moreover, for any h > 0 the discrete-time sampling X(h) = (Xnh)n∈N is strictly
stationary and ergodic.

Remark 7.2. If we allow M to take the value +∞, then Xt = min(Yt,+∞) =
Yt. Therefore, we can see Theorem 4.2 as a particular case of Theorem 7.1.

Assume that in the model (21) we observe a time discretization of (Xt). That
is, for some fixed and known ∆ > 0, we observe (Xn∆)n∈N. In the particular
case M = +∞, we observe a time discretization of Y . Our goal is to estimate
the vector of parameters (ρ, σ, θ) from those observations. Birkhoff’s Ergodic
Theorem (see for example [Kre85]) implies the following result.

Proposition 7.3. Assume that the model (21) satisfies Assumptions 1-5. If ϕ :
Rd → R is a Borel-measurable functions such that E|ϕ(X0, . . . , X(d−1)∆)| <∞,
then as n→∞

1
n

n−1∑
i=0

ϕ(Xi∆, . . . , X(i+d−1)∆) a.s.−−→ Eϕ(X0, . . . , X(d−1)∆).

In practice, we will observe the processX for a long time and replace the limit
in the previous equation with a truncated average to produce the approximate
identity for N large:

1
N

N−1∑
i=0

ϕ(Xi∆, . . . , X(i+d−1)∆) ≈ fϕ(ρ, σ, θ) (22)

where fϕ(ρ, σ, θ) = Eϕ(X0, . . . , X(d−1)∆). The function fϕ can be evaluated
either numerically or analytically, depending on the model. The left hand side
of (22) is a number that can be computed explicitly from the data. The right
hand side is a function of the parameter values. Therefore, the above relation-
ship gives a nonlinear equation involving the vector of parameters. Repeating
the process for different choices of ϕ (in practice, usually polynomials) yields a
system of nonlinear equations, which can then be inverted to obtain estimates
ρ̂, σ̂, θ̂ of the true parameter values.

The estimation procedure described above is usually referred to as the
“Method of Moments”. In the computationally intensive case where fϕ needs
to be evaluated using Monte-Carlo simulation of the process with the given
parameter values it is referred to as the “Simulated Method of Moments”. In
order to understand better its performance, it is useful to study the error in
the approximate equation (22), particularly as it relates to the number of ob-
servations N . With additional assumptions on the mixing coefficients of X we
can use Ibaragimov’s Central Limit Theorem1 (see [Ibr62] and [HH80]). Given
functions ϕ1, . . . , ϕp:

1√
N

N−1∑
i=0

ϕ1(Xi∆, . . . , X(i+d−1)∆)− fϕ1(ρ, σ, θ)
...

ϕp(Xi∆, . . . , X(i+d−1)∆)− fϕp(ρ, σ, θ)

 L−→ Np(0,Σ). (23)

1For example, a sufficient conditions is that X is ρ-mixing (see Appendix A)
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That is, as N tends to infinity, the random vector consisting of the errors in (22)
multiplied by

√
N converges to a p-dimensional normal random variable with

mean 0 and variance-covariance matrix Σ ∈ Rp×p (the exact expression for Σ is
rather complicated). The result therefore gives a (probabilistic) estimate on the
size of the error in the equation used for the method of moments estimate. Since
the error must be multiplied by

√
N in order to produce a nontrivial limit, it is

common to say that the rate of convergence is O(1/
√
N), or that the error “goes

down like 1/
√
N”. Nonetheless, we stress that, as is common in such problems,

we only have a probabilistic bound on the error.
In order to estimate the parameters using the Method of Moments, we need

as many integrable functions as the dimension of the parametric space, that is
dim(Θ) + 2. One method is to use Assumption 4 (E|V0|p <∞ for some p > 1)
together with the following lemma.

Lemma 7.4. Suppose that ϕ is a Borel-measurable function ϕ : Rd → R and
there exist a positive constants K and r such that 1 ≤ r ≤ p and

|ϕ(s0, s1, . . . , sd−1)| ≤ K
(
1 +

d−1∑
k=0

|sk|r
)
,

Then E|ϕ(X0, X∆, . . . , X(d−1)∆)| <∞.

Proof. From Theorem 5.1, Corollary 3.9 and Assumption 4 we have that
E|Yt|r ≤ cr < ∞. Clearly, for any 0 < M ≤ +∞ we have that E|Xt|r ≤
E|Yt|r <∞. Finally

E|ϕ(X0, X∆, . . . , X(d−1)∆)| ≤ K
(
1 +

d−1∑
k=0

E|Xi∆|r
)
<∞,

which completes the proof.

In [GCJL00] was proven that the process V in (17) is ρ-mixing. Hence, we
can have a Central Limit Theorem using the fact that the process Z = (Zn)n∈N
defined by

Zn = X(n+1)∆ − e−ρ∆Xn∆

is ρ-mixing (by Theorem 3.4). This has the disadvantage that the parameter ρ
has to be known beforehand.

For the OU-drift model a much stronger result is possible, since the joint
Gaussianity of V and Y can be used together with the spectral gap inequality
(see [Bak02]) to show that Y (and hence X) is ρ-mixing.

8 Numerical results

In this Section we simulate all the models using MATLAB. We verify the conver-
gence of the sample time averages, as predicted by the ergodic theory, and give
empirical evidence supporting that the rate of the convergence is of order 1√

n
.

Finally, we also also perform the calibration of the parameters.
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8.1 Convergence of the moments

Assume the model (17) and define:

e1 = β, e2 = β2 + Var(Yt), and

e2+j = β2 +
vλ

1− (α
ρ )2

e−jα∆ +

(
Var(Yt)−

vλ

1− (α
ρ )2

)
e−jρ∆ j = 1, 2, 3,

where Var(Yt) = σ2

2ρ + vλ

1+ α
ρ
. Also, for N ∈ N define:

m
(j)
N =

1
N + 1

N∑
n=0

Xj
n∆ ≈ ej j = 1, 2,

and m
(2+j)
N =

1
N + 1− j

N∑
n=j

X(n−j)∆Xn∆ ≈ e2+j j = 1, 2, 3.

Tables 1 and 2 shows the results of 1000 simulations of the CIR-drift model
(λ = 1

2 ). In both cases we have 10000 observations, first with ∆ = 0.1 on the
time interval [0, 1000], and then with ∆ = 1 and a longer time interval [0, 10000].

e1 = 10 e2 = 102.46667 e3 = 102.44874
n m̄(1) m̄(2) m̄(3)

(mean.err.) (mean.err.) (mean.err.)
100 9.99549 101.83554 101.82028

( 9.67%) (18.93%) (18.96%)
1000 10.02925 102.95713 102.94077

( 6.23%) (12.23%) (12.24%)
10000 9.99472 102.34364 102.32580

( 2.24%) ( 4.41%) ( 4.41%)

Table 1: 1000 simulations with ∆ = 0.1 on t ∈ [0, 1000].

e1 = 10 e2 = 102.46667 e3 = 102.29379
n m̄(1) m̄(2) m̄(3)

(mean.err.) (mean.err.) (mean.err.)
100 9.99681 102.38183 102.20773

( 6.48%) (12.69%) (12.77%)
1000 9.98718 102.21245 102.03911

( 2.18%) ( 4.29%) ( 4.29%)
10000 10.00095 102.48519 102.31227

( 0.69%) ( 1.36%) ( 1.36%)

Table 2: 1000 simulations with ∆ = 1 on t ∈ [0, 10000].
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In both cases we observe the convergence of the moments, as predicted by the
Ergodic Theorem. Comparing the results of both tables we see that increasing
the period of observations has a better impact on the error than increasing the
frequency of the sampling. The 4th and 5th moments behaved very similar to
the 3rd.

8.2 Estimation

Using the relations m(i)
N ≈ ei for i = 1, . . . , 5, the estimators α̂, β̂, ν̂, ρ̂, and

σ̂ can be computed. The main difficulty is due to the non-linearity of the ei’s
as functions of the parameters (specially α and ρ). This implies that we need
a numerical method to solve the equations, and finding a good initial guess of
the parameters is not trivial. Also, the error incurred in the approximation
m

(i)
N ≈ ei gets magnified by the non-linearity of the equations.
We ran several simulations and solved the non-linear system numerically.

We found that even when we used the real values of the parameters as the
initial guess, and the relative errors of the m(i)’s were below 1%, we obtained
estimators with relative errors above 60%.

All this is because the high dimensionality of the parametric space. Therefore
we are going to assume some of the parameters as known, and estimate the
others. In doing that simplification, we are going to introduce extra complexity
using a price cap.

Assume an OU-drift model (λ = 0) with a price cap M . Figure 1 shows the
result of one simulation for α = 0.05, β = 10, ν = 0.1, ρ = 0.1, and σ = 0.6.
The observations were made at intervals of length ∆ = 1 from t = 0 to t = 500.

0 50 100 150 200 250 300 350 400 450 500
5

6

7

8

9

10

11

12

13

14

X
n 

∆

t

Y
X=min(Y,M)

Figure 1: Simulation of Xt (α = 0.05, β = 10, ν = 0.1, ρ = 0.1, σ = 0.6).

Assume that α, ν and σ are known, and we want to estimate β and ρ given
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the observations (Xn∆)n∈N. Since in this case Yt is a Gaussian process with:

EYt = β and Var(Yt) = Γ2 :=
σ2

2ρ
+

ν2

2α

1 + α
ρ

we can compute e1 = EXt and e2 = EX2
t exactly. Denote:

ϕ(x) =
1√
2π
e−

1
2 x2

and Φ(x) =
1√
2π

∫ x

−∞
e−

1
2 u2

du.

Then:

e1 = M + (β −M)Φ
(M − β

Γ

)
− Γϕ

(M − β

Γ

)
,

and e2 = M2 + (β2 + Γ2 −M2)Φ
(M − β

Γ

)
− (β +M)Γϕ

(M − β

Γ

)
.

Table 3 shows the results for 1000 simulations.

e1 = 9.9565 e2 = 100.7769 β = 10 ρ = 0.1
n m̄(1) mean error m̄(2) mean error β̂ mean error ρ̂ mean error

500 2.1% 4.07% 2.25% 20.8%
1000 1.55% 3% 1.66% 14%
5000 0.67% 1.3% 0.719% 5.9%
10000 0.496% 0.961% 0.533% 4.31%

Table 3: 1000 estimations of (β, ρ) with ∆ = 1 on t ∈ [0, 10000].

A Strictly Stationary Processes

A.1 Mixing coefficients

Let G1,G2 ⊂ F be two σ-algebras. The following three measures of dependence
between them can be defined (see for example [Dou94] and [Bra86a])

α(G1,G2) = sup
{
|Cov(U1, U2))|; 0 ≤ U1, U2 ≤ 1, Ui Gi-measurable for i = 1, 2

}
,

β(G1,G2) =E
[
ess.sup

{
|P[B|G1]− P[B]|;B ∈ G2

}]
,

ρ(G1,G2) = sup
{
|corr(X1, X2)|;X1, X2 real, X1 ∈ L2(G1), X2 ∈ L2(G2)

}
.

These coefficients are related by the inequalities 2α ≤ β ≤ 1 and 4α ≤ ρ ≤ 1.
Let X be a process and define Gt = σ(Xs; s ≤ t) and Gt = σ(Xs; s ≥ t).

Then αX(t), βX(t) and ρX(t) are defined by cX(t) = sups≥0 c(Gs,Gs+t), with
c = α, β or ρ. X is said to be c-mixing if cX(t) → 0 when t→∞.
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If X is a strictly stationary process, then cX(t) = c(G0,Gt). If X is also a
Markov process, then cX(t) = c(σ(X0), σ(Xt)), and in this case

αX(t) = sup
{
|Cov(f(X0), g(Xt))|; f, g are B(S)-measurable and 0 ≤ f, g ≤ 1

}
,

βX(t) =E
[
ess.sup

{
|P[Xt ∈ B|X0]− P[Xt ∈ B]|;B ∈ B(S)

}]
,

ρX(t) = sup
{
|corr(f(X0), g(Xt))|; f, g ∈ L2

π

}
,

where π is the stationary distribution of X (see [Bra86a]).
The following result (see [Bra86a]) states that the mixing conditions are

stronger than ergodicity. However, some times they are easier to verify.

Proposition A.1. If a strictly stationary process X is α-mixing, then it is
ergodic.

A.2 Ergodicity and Hidden Markov Models

The following definition is based on [Ler92] (see also [BR96]). Let (S,B(S)) and
(T,B(T )) be two Polish spaces equipped with their Borel σ-algebras. A stochas-
tic process (Zn)n∈N with state-space S is a Hidden Markov Model (HMM) if
there exists a strictly stationary Markov process (Un)n∈N with state-space T
such that:

(i) For all n, (Zk)k≤n are conditionally independent given (U1, U2, . . . , Un), and
the conditional distribution of Zk depends only on Uk.

(ii) The conditional distribution of Zk given Uk = u does not depend on k.

We will refer to U as the hidden chain and Z as the observed chain.

Proposition A.2. If Z is a HMM with hidden chain U , then Z is strictly
stationary. If U is ergodic, then Z is also ergodic. Moreover, αZ(n) ≤ αU (n)
and ρZ(n) ≤ ρU (n).

Proof. The strict stationarity of Z and the inequality αZ(n) ≤ αU (n) are both
proven in [GCJL00]. That the ergodicity of U implies the ergodicity of Z is
proven in [Ler92]. Here we are going to show the inequality ρZ(n) ≤ ρU (n).

First notice that since Z is strictly stationary, the definition of ρZ(n) can be
rewritten as

ρZ(n) = sup
{∣∣corr(φ(Z1, . . . , Zi), ψ(Zi+n+1, . . . , Zi+n+j))

∣∣;
φ : Si → R, ψ : Sj → R, φ, ψ ∈ L2

π, i, j ∈ N
}
.

To simplify notation, write Φ = φ(Z1, . . . , Zi) and Ψ = ψ(Zi+n+1, . . . , Zi+n+j).
Then, with a little abuse of notation

ρZ(n) = sup
{∣∣EΦΨ

∣∣; EΦ = EΨ = 0,EΦ2 ≤ 1,EΨ2 ≤ 1
}
.

For any L2
π function φ : Si → R we can define Hφ : T i → R as

Hφ(u1, . . . , ui) = E[φ(Z1, . . . , Zi)|U1 = u1, . . . , Ui = ui].
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Notice that by Jensen’s inequality we have that (Hφ)2 ≤ H(φ2).
Now assume that EΦ = EΨ = 0, EΦ2 ≤ 1 and EΨ2 ≤ 1. Conditioning with

respect to U1, . . . , Ui+n+j and using the definition of HMM we obtain that

E(Hφ)(U1, . . . , Ui) = EΦ = 0,
E(Hψ)(Ui+n+1, . . . , Ui+n+j) = EΨ = 0,

E(Hφ)2(U1, . . . , Ui) ≤ EΦ2 ≤ 1,

E(Hψ)2(Ui+n+1, . . . , Ui+n+j) ≤ EΨ2 ≤ 1,
and E[(Hφ)(U1, . . . , Ui)(Hψ)(Ui+n+1, . . . , Ui+n+j)] = EΦΨ.

In that case, E[(Hφ)(U1, . . . , Ui)(Hψ)(Ui+n+1, . . . , Ui+n+j)] ≤ ρU (n). Thus we
have that ρZ(n) ≤ ρU (n).

Remark A.3. Notice that in a HMM the hidden chain U is a strictly stationary
Markov process by definition, but the observable chain Z is not necessarily a
Markov process. Nevertheless, the previous proposition asserts that Z is always
strictly stationary.

B Moments of the hidden processes

Assume that V follows the model (17) with λ = 0, 1
2 , 1, and V0 follows its

stationary distribution, so that the process V is strictly stationary. Denote
vt = (Vt − β). Then

dvt = −αvt dt+ ν(β + vt)λ dWt.

Lemma B.1. For any 0 ≤ s ≤ t, and any m ∈ N we have that

ermtvm
t = ermsvm

s + qm

∫ t

s

ermu[avm−2
u + bvm−1

u ] du+ [N (m)
t −N (m)

s ] (24)

where N (m)
t is a Ft-martingale,

qm =
m(m− 1)

2
ν2, rm = mα− δqm,

and the coefficients a, b and δ depend on λ as follows:

λ a b δ
0 1 0 0
1
2 β 1 0
1 β2 2β 1
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Proof. Applying Itô’s lemma we obtain

d[ermtvm
t ] = ermt

[
rmv

m
t dt+mvm−1

t dvt +
m(m− 1)

2
vm−2

t d < v >t

]
= ermt

[
rmv

m
t dt−mαvm

t dt+mνvm−1
t (β + vt)λ dWt + qmv

m−2
t (β + vt)2λ dt

]
.

Depending on the value of λ we have

vm−2
t (β + vt)2λ =


vm−2

t if λ = 0
βvm−2

t + vm−2
t if λ = 1

2

β2vm−2
t + 2βvm−2

t + vm
t if λ = 1

Regardless the value of λ, all the terms containing vm
t on the right hand side

cancels out. Hence, defining

N
(m)
t = mν

∫ t

0

ermuvm−1
u (β + vu)λ dWu

we obtain (24).

Lemma B.2. Denote Mm = Evm
t = E(Vt − β)m, and κ = ν2

2α . Then

M0 = 1
M1 = 0

M2 =
1(

1
κ − δ

)a
M3 =

1(
1
2κ − δ

)bM2 =
1(

1
κ − δ

) (
1
2κ − δ

)ab.
Proof. Clearly M0 = 1. Taking expectations on (24) and using the stationarity
of v we obtain for m = 1 that M1 = 0 (since q1 = 0). For m ≥ 2 we obtain the
recursive relation

Mm =
qm
rm

[aMm−2 + bMm−1] ∀m ≥ 2.

Noticing that
qm
rm

=
qm

mα− δqm
=

1
1

(m−1) ν2
2α

− δ

we easily obtain M2 and M3.

Corollary B.3. Depending on the value of λ, the first three moments of v are
given by the following table:

Lemma B.4. If 0 ≤ s1 ≤ s2 ≤ s3 then

E[vs1vs2 ] = e−α(s2−s1)M2,

E[vs1vs2vs3 ] = e−α(s3−s1)M3.
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λ M0 M1 M2 M3

0 1 0 ν2

2α 0

1
2 1 0 βν2

2α
β2ν4

2α2

1 1 0 β2ν2

2α−ν2
2β3ν4

(2α−ν2)(α−ν2)

Proof. Using that q1 = 0 and r1 = α we can write (24) for m = 1 as

eαs2vs2 = eαs1vs1 + [N (1)
s2
−N (1)

s1
]. (25)

Multiplying by vs1 and taking expectations we obtain

eαs2E[vs1vs2 ] = eαs1E[v2
s1

] + E[vs1(N
(1)
s2
−N (1)

s1
)].

But E[vs1(N
(1)
s2 −N

(1)
s1 )] = E

[
vs1E[N (1)

s2 −N
(1)
s1 |Fs1 ]

]
= 0. Hence

E[vs1vs2 ] = e−α(s2−s1)M2.

Similarly, rewriting (25) with s2 and s3, multiplying by vs1vs2 , and taking ex-
pectations we get

eαs3E[vs1vs2vs3 ] = eαs2E[vs1v
2
s2

] + E[vs1vs2(N
(1)
s3
−N (1)

s2
)],

thus E[vs1vs2vs3 ] = e−α(s3−s2)E[vs1v
2
s2

]. To obtain this last expectation we first
write (24) for m = 2 as

er2s2v2
s2

= er2s1v2
s1

+ q2

∫ s2

s1

er2u[av0
u + bv1

u] du+ [N (2)
s2
−N (2)

s1
].

Multiplying by vs1 and taking expectations we obtain

er2s2E[vs1v
2
s2

] = er2s1E[v3
s1

] + q2

∫ s2

s1

er2u
(
aE[vs1 ] + bE[vs1vu]

)
du

Since E[vs1 ] = M1 = 0 and E[vs1vu] = e−α(u−s1)M2 we have that

er2s2E[vs1v
2
s2

] = er2s1M3 + q2bM2e
αs1

∫ s2

s1

e(r2−α)u du

= er2s1

(
M3 −

q2bM2

r2 − α

)
+ eαs1+(r2−α)s2

q2bM2

r2 − α
.

Lemma B.2 and a little algebra shows that q2bM2
r2−α = M3. Then

E[vs1vs2vs3 ] = e−α(s3−s2)E[vs1v
2
s2

]

= e−α(s3−s2)e−r2s2eαs1+(r2−α)s2M3 = e−α(s3−s1)M3.

which concludes the proof.
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