ESTIMATION OF AUCTIONS WITH INCOMPLETE BIDDING DATA
KONRAD MENZELT AND PAOLO MORGANTTI*

ABSTRACT. We consider estimation of independent private auction models when only a subset
of the bids for each auction are observed. Even though many objects of interest remain nonpara-
metrically identified from incomplete bidding data, estimation of the distribution of valuations
and some of its functionals is shown to be irregular in the sense that the inverse of the mapping
from the parent distribution to that of the observable bids is not Lipschitz continuous. We derive
the optimal rate of convergence for the c.d.f. of valuations depending on the number of bidders
and which particular bids are observed for each auction. Furthermore, we propose a trimming
procedure that yields an estimator which is asymptotically Gaussian at an adaptive rate. We also
discuss implications for other functionals of the parental distribution. In particular it is shown
that expected revenue and optimal reserve price are not estimable at the root-n rate in general,
but the rates will depend on the relative sizes of the observed and the counterfactual auctions.
While most of our results are on second-price auctions, we also demonstrate how our findings
apply to first-price and descending-bid formats. Our results also suggests that imposing smooth-
ness restrictions on the underlying valuation distribution may improve large-sample behavior of
nonparametric estimators substantially.
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The distribution of bidders’ valuations is one of the primary objects of interest in the empirical
analysis of independent private values (IPV) auctions. Under the IPV assumption, auction theory
makes strong predictions on virtually any question of practical interest based on knowledge about
this distribution, which in turn is known to be nonparametrically identified under fairly general
conditions.

In this paper, we analyze asymptotic properties of nonparametric estimators for the cumulative
distribution function (c.d.f.) of valuations when bidding data is incomplete, that is if only

particular bids are observed for each auction in our sample. We find that even though the
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pointwise rate of convergence for the c.d.f. of valuations is generally the same as the rate for
the distribution function of the order statistics corresponding to the observed bids, rates with
respect to the uniform metric and the Lo-norm, respectively, are considerably slower and depend

on the number of bidders, and which particular bids are observed.

Incomplete Data. There are many relevant cases in which by design only a subset of the bids
are observed even to the auctioneer. Most importantly, in descending bid (Dutch) auctions only
the winning bid is observed, whereas in the popular ascending ”button” auction format, the
auction ends when the second-highest bidder drops out, so that the highest bid is not observed.

Furthermore, in many cases and without regard to the auction format, the researcher may
only have access to a data set in which only the transaction price and/or highest bid is recorded.
In auctions for one single good, the transaction price is linked to the first or second highest
order statistic for most formats, whereas e.g. for book building in an auction of r identical units
of the good with K bids, the resulting transaction price would depend on the (K — r)th order
statistic. In the latter case, a nonparametric estimator based only on the transaction price should
be expected to do poorly in approximating both the upper and the lower tail of the valuation
distribution.

The results of this paper are also relevant for constructing bounds for the distribution of val-
uations in settings in which complete bidding data may be available, but some of the conditions
of the benchmark model for the auction are relaxed. Haile and Tamer (2003) analyze ascending
bid formats, where the highest bid recorded for a particular bidder over the course of a given
auction need not necessarily correspond to the ”idealized” bid described by the theoretical model
at hand. Their bounds are calculated by inverting the distribution of each order statistic sepa-
rately, see also Chernozhukov, Lee, and Rosen (2008) for a treatment of the statistical problem of
constructing this bound. Also in a recent study Aradillas-Lépez, Gandhi, and Quint (2010) pro-
pose a test for correlated private values that is based on estimators for the valuation distribution

from transaction prices in auctions with different numbers of participants.

Nonparametric Approach. Beyond its practical relevance, the problem of estimating auctions
has two features that make it very appealing to theorists and empirical researchers alike: for one,
the structure of the problem is very rich and theoretically well-understood, so that given the
auction format, the only major unknown is the distribution of bidders’ valuations, F'(v). If we
are willing to treat F'(v) as a structural parameter, auction theory makes strong predictions

about outcomes for alternative auction formats. The other attractive characteristic of empirical
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auctions is that this "deep” parameter F'(v) is under reasonable conditions nonparametrically
identified from bidding data in a very wide range of settings.

Nonparametric identification of features of a model also allows to interpret parametric pro-
cedures as a plausible statistical approximation rather than treating the literal specification of
the model as prior knowledge, and nonparametric non-identification results are helpful to shed
light on which particular features of a parametric model used for estimation are substantive for
identification, as already argued by Roehrig (1988). However this interpretation also implies that
the properties of the corresponding nonparametric estimator are indicative of the quality of this
approximation. In this fashion, if nonparametric estimation is possible only at a very slow rate of
consistency, we should be very cautious in interpreting a root-n consistent parametric estimator
as an approximation to the more complex ”true” model.

Much of the recent literature on nonparametric estimation of auctions has focused on identifi-
cation (for a relatively recent survey see Athey and Haile (2007)), where Athey and Haile (2002)
and Komarova (2009) provide results on nonparametric identification from incomplete bidding
data, and Haile and Tamer (2003) proposed a method of constructing nonparametric bounds
on the distribution under weaker assumptions on bidding behavior by inverting the distribution
of each bid separately. Guerre, Perrigne, and Vuong (2000) derive optimal nonparametric esti-
mators for first-price auctions when all bids are observed, and in this case, the distribution of

valuations can be estimated at the usual nonparametric rate.

Description of Results. Intuitively, if we only observe the highest and/or second highest bid
in an auction with a large number of bidders, it is difficult to learn about the lower tail of the
distribution, and this is reflected by the slope of the inverse mapping that is used to recover Fy (v)
from the joint distribution of bids, and which is in many cases not bounded as we approach the
lower bound of the support of the distribution of valuations. This problem affects the rate of
convergence of nonparametric estimators, which will in general depend on how ”close” any of the
observed bids are to the highest and lowest bid in each auction. The resulting rates depend on
the norm on [y, where the sup-norm leads to a slower rate than the L, norm, and the point-wise
rate for the estimator is the same as that for the joint distribution of bids.! We also find that the
upper bounds on convergence rates improve substantially if we require the valuation distribution
to be smooth, however standard nonparametric procedures need in general not attain the faster

rates unless these shape restrictions are imposed for estimation.

IFor more standard results on optimal rates with respect to the sup- and L,-norm in nonparametric estimation
see also Ibragimov and Has'minskii (1981) and Stone (1983)
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Since the quantile transformation linking the distribution of observed bids to the parent dis-
tribution is a continuous function on the compact set [0, 1], it is also uniformly continuous by the
Heine-Cantor theorem, so that the mapping is also continuous with respect to the total variation
norm on c.d.f.s.. In this sense, the inverse problem of recovering the parent distribution from
the joint distribution of observable bids is not ill-posed. However, in order to derive a uniformly
valid distributional approximation to the estimator, it will be necessary to regularize this inverse
because the local linearization of the problem turns out to be ill-posed even though the orig-
inal problem is not. This feature of our problem bears some resemblance with the irregularly
identified problems considered by Khan and Tamer (2009).

The slower speed of convergence for the distribution of valuations also affects the rate for
estimators of other quantities of practical interest - e.g. the optimal reserve price - which can
be calculated from Fy (v). We analyze bounds on the rate of convergence for linear functionals,
expected revenue and the optimal reserve price. In particular it is shown that expected revenue
and optimal reserve price is not estimable at a root-n rate in general, but the fastest possible
rate may be significantly slower, depending on the number of bidders in the observed and the
counterfactual auctions.

Finally we show how our findings apply to nonparametric estimation of first-price auctions
with incomplete bidding data and descending bid auctions, for which by design only the highest
bid is observable. Here, the formal analysis is complicated by the fact that in equilibrium, bidders
do not directly reveal their true valuations, but adjust their bids by a factor which depends on
the underlying valuation distribution. We propose a nonparametric estimator that uses only
the highest bid for each auction and give an upper bound for the rate of convergence of any

nonparametric estimator.

Outline of Paper. We will now formally state the estimation problem analyzed in this pa-
per. Section 3 derives optimal convergence rates for nonparametric estimators of the valuation
distribution, and section 4 derives the asymptotic distribution of a regularized version of that
estimator. We then discuss how these findings affect nonparametric estimators for functionals of
the distribution of values, and section 6 shows how to extend the main rate result to the case of
first-price auctions.

2. DESCRIPTION OF THE PROBLEM

In this paper we consider estimation when we observe data from n independent auctions in
which one indivisible object is auctioned. Each auction ¢ = 1,...,n has a known number K of

bidders, and for each auction, the bidders’ valuations (V1, ..., Vi) are drawn independently from
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the distribution Fy(v) € Fo(V) with support V C R, where Fy(V) denotes a subset of the set of
c.d.f.s on V (i.e. the set of upper semi-continuous, nondecreasing functions from V* to the unit
interval which attain the values 0 and 1 in the closure of V).

The focus will be on symmetric independent private values (IPV) second-price auctions with
exogenous participation, but we will argue that the qualitative findings also apply to asymmetric
auctions and other auction formats. However, the independence assumption is crucial for non-
parametric identification (see Athey and Haile (2002)). The formal assumptions on the auction

format and equilibrium bids are summarized in the following assumption:

Assumption 2.1. (Second Price Auction) We observe data from n i.i.d. auctions of a single
good with K risk-neutral bidders each, where (i) participation is exogenous, and (ii) the auction
satisfies symmetric independent private values (IPV), V; i Fo(v) for some Fy € Fy, where
(#ii) any distribution F' € Fy is absolutely continuous with respect to the Lebesque measure with
density f(v). (iv) The auction is sealed-bid second-price or a strategically equivalent format, and

participants play weakly dominant strateqy with bids B; = b*(V;) = V;.

In order to keep our results general, we will allow the dataset available to the econometrician

to be any r-dimensional subvector of the complete vector (Vii, ..., Vik) of bids:

Assumption 2.2. (Observable Bids) We observe the k1 < ky < -+ < k.th lowest bids B; =
(Bik17 Bik27 ) Blkr)

For example, if Assumption 2.1 holds, and we only record the transaction price for each of the
n auctions, the observed bids correspond to B; = B;x_1 = V;x_1, the second highest valuation
among potential buyers in the ¢th auction.

We will now characterize the tail behavior of the p.d.f. of V' in terms of its quantiles and define

h(r; F) = f (F7'(7))
Assumption 2.3. (Tail behavior of Fy(v)) (i) The p.d.f. f(v) of V; is bounded away from zero
in the interior of the support, and the first p derivatives of f(v) are bounded. (ii) There exist
constants o, g such that for low quantiles T, the behavior of the p.d.f. of V; is characterized by

limsup 7y “h(m; F) < 0o

T1—>0

and in the upper tail of the distribution,
limsup(1 — 72)"*?h(1 — 7; F) < 00

To—1

for all F € Fy.
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For example, if the p.d.f. of V is bounded from above and away from zero at the lower
boundary of its support, the second part of Assumption 2.3 holds with «; = 0, whereas if V'
follows a log-normal distribution, the statement holds for oy = % and potentially larger values.

For a given parent distribution F', denote the joint c.d.f. of the (ki,...,k,)th order statistics
by

Gb; F) =Gy ke ((brys ooy b, )s F) == Pp(Br, <biyy..., Br, <bg,)

For example the c.d.f. for the kith order statistic can be expressed as

K

K F(bk,)
. P— m _ K—m — kl—l _ K—kl
le (bkl, F) = E F(bk1> [1 F(bk1>] (1{21 — 1)'(K — ]{71)' /0 S (1 8) dt

m=k1

whereas a pair of order statistics Bx,;x), B(x,:k), has the joint c.d.f.

P F>
Glﬂ,kQ((bku bk2>; F) ]{31, k27 / / kl 1 )kQ_kl_l(l - SQ)K_k2d82d81 (21)

where N (ky, ko; K) = T klf—(ll)!(K—kg)!’ and Fy := F (by,), see e.g. David and Nagaraja (2003).

We give an expression for the general case in the appendix.

Example 2.1. To frame thoughts, suppose that we observe the winning bid By, in a sealed-bid
independent values second-price auction, which is the highest order statistic for K i.i.d. draws
from the population distribution of valuations Fy(v). In this case the c.d.f. of the observed bid is

given by GgK(v, F) = [F(v)]K, and the mazimum likelihood estimator for the parent distribution

= VG = o (Cox(v)

where @HK(U) =Gg(v,P,) =250 1 {BZ-(K:K) < v} is the empirical c.d.f. of Bg;.

15 given by

In this case, the maximum-likelihood estimator has a closed form and is guaranteed to be
non-decreasing in v. Also, from Donsker’s Theorem, \/ﬁ(érff x — F) ~~ Gp, a Brownian bridge,
and since in addition ¢ (7) is uniformly continuous on the unit interval, the maximum likelihood
estimator £, (v) is uniformly consistent for F(v). However, it is important to notice that for any
K > 1, the mapping ¢, (1) = §/7 is not Lipschitz-continuous in 7 € [0, 1], which will in general
affect the rates of convergence for ﬁn(v) as a function, and also has implications for the limiting

distribution of F,,(v) and other nonparametric estimators.



AUCTIONS WITH INCOMPLETE BIDDING DATA 7
3. ESTIMATION OF THE C.D.F. AND OPTIMAL RATES

In this section, we are going to give bounds on the rate of convergence of the nonparametric

estimator for the parent distribution Fy(v). Following Stone (1980), we say that r, is an upper

bound to the rate of convergence of F,, under the norm || - || if
liminf sup Pp (Hﬁ’n —F| > crn) >0 (3.1)
n FeFo

for any sequence of estimators {F}, },o, and

lim lim inf sup Pg <||Fn — F| > crn> =1 (3.2)
=0 n per
These bounds are not specific to any given estimator F, in the problem. We will establish
these bounds on the rate of convergence by constructing a worst-case scenario in terms of a
true distribution Fj € F and a local perturbation that can’t be distinguished with certainty by
any statistical procedure. In principle, this "hardest” estimation problem may be different for
different estimators and/or different measures of distance, but it turns out that for our purposes
the form of the perturbations determining the sharpest bound on the rate is the same for all
problems we are considering.
Also, r, is called an achievable rate of convergence if we can construct a sequence {Fn} of
estimators satisfying
lim limsup sup Pr (Hﬁ’n — F| > crn> =0 (3.3)

Cc— 00 n FE]:O

If a rate r, is both achievable and an upper bound to the rate of convergence, we say that it is
the optimal rate of convergence for all nonparametric estimators of Fy € Fy.

The statement in equation (3.3) can be read as a requirement that the estimator normalized
by ;! is concentrated on a compact set with respect to the relevant norm for large samples, or
equivalently that the rescaled distance between the estimator and the estimand is asymptotically
tight.

The notion of optimality for the rate of convergence is of course very weak, and in many cases,
we will be able to construct a large number of distinct, and equally reasonable estimators all of
which achieve the optimal rate. However, for us the main purpose of establishing optimality of
a rate is to demonstrate that an upper bound on the rate is in fact sharp, and therefore a useful

measure of the difficulty of the nonparametric estimation problem at hand.
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3.1. Upper Bounds on the Rate of Convergence. In order to illustrate the main idea
behind the rates of convergence, we are first going to have a look at the setting in Example 2.1

for which we have a closed-form expression for the maximum-likelihood estimator.

Example 3.1. (Example 2.1, continued) For the problem of estimating the parent distribu-

tion from the highest order statistic, the nonparametric mazimum likelihood estimator is

K

G (v)

for the empirical c.d.f. of the highest bid, Gk By the delta-rule, we have that the point-wise

asymptotic mean-square error of this estimator is given by

F,(v) =

wse (F (5 (0)) = E[(@nk (B () = G (B () o)) (G (Fi ()5 ) F
1
— ﬁ(l_TK)Tz—K

Hence if K > 2, the MSE at the 7,th quantile goes to zero only if TanK — 00. Hence it must be
true that for this estimator P, (SUPvev ’Fn(v) — Fo(v)’ > cn_%> > 0 for any ¢ > 0. Theorems
3.1 and 3.1 below imply that this is in fact also the optimal uniform rate for estimating F(v).

As this example illustrates the difficulty consists in that the inverse mapping from the distri-
bution of observable bids to the parent distribution may not be Lipschitz-continuous in some
cases, but may have divergent slope in the tails of the distribution. The problem is mitigated by
the fact that the variance of the empirical distribution decreases linearly as we move out into the
tails, but persists unless we observe bids that are close to the lowest and highest order statistics
in a sufficiently large number of auctions.

For the more general setting of n i.i.d. IPV second-price auction for which we observe a vector
(Vikys - -+, Vig,) of r different bids, we can establish the following upper bound on the rate of

convergence:

Theorem 3.1. Let F), be an estimator for Fy. Then under Assumptions 2.1-2.3, v, = n~> is an

upper bound on the rate of convergence satisfying (3.1) and (3.2), where

(a) A = min {%, #jlﬂ), %} for the sup-norm ||h|| := sup, |h(v)],

(b) A = min {4, 2pentt a0 for the Ly (u)-norm ||hl, == (f h(v)"p(dv))""", and

2) q(kit+p) 7 q(K—kr+1+p)
(c) restricting the function to a compact subset A C V), the rate under the norm || - ||, is

1/2

rn =mn'% forany q=1,2,... or q= oo.
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It is important to notice that this bound depends crucially on the number K of bidders in
the auction, and on which particular bids are observed. In particular for the setting of Example
2.1, for p = 0 the upper bound on the uniform rate of convergence implied by Theorem 3.1 is

T = n_%, which is the same as the result of our informal discussion of the problem before.

Example 3.2. In order to get an intuition for the rate result, suppose we observe the ky and koth
order statistics, where ko > kq, and we want to distinguish whether the observed data was gen-
erated by a distribution Fy or a distribution Fy obtained by perturbing the parent distribution Fy
below the 1 -quantile and above the 1 — To-quantile, respectively. Then from the expression (2.1),
the probability of observing a realization of (Vig,, Vir,) that is informative for a test between Fj
and Fy is given by Pr, (Vie, < Fy (1)) = Gy (Fy ' (11); F) = N(ky; K) [t P71 (1= s)Khds =
O (Tfl), whereas the probability of an observation that is relevant for a test between Fy and Fy
equals Pr, (Vig, > Fy ' (1= 7)) = N(ka; K f1 L8P = s)Kds = O (r3 "), Hence if
either ky > 1 or ko < K, the probability of an observatwn that is informative about a small
perturbation of the tails of the distribution decreases much faster than the size of that perturba-
tion, and the uniform rate of convergence of any estimator ﬁn will then be driven by the more

problematic tail of the distribution.

3.2. Consistent Estimation of the Valuation Distribution. For clarity of the exposition
we will focus on the case in which only the kth lowest bid out of K is observed. We will argue
later on in this section that this is without loss of generality for a discussion of the achievable
rate of convergence for nonparametric estimators of the valuation distribution. In particular we
will show that the upper bound on the rate in Theorem 3.1 can be achieved by an estimator
that combines the inverted empirical marginal c.d.f.s of the observed bids in a straightforward
manner.

For any k =1,..., K, we will define the mapping

K i K—k
Or(T) = (k—l)!(K—k;)!/O sl —s)" TNds

which is strictly increasing by inspection. From the facts about order statistics given in Appendix

A, the c.d.f. of the kth order statistic in a sample of K i.i.d. observations from a distribution F'

can be written as

F(v)
Gk(’U; F) = PF(‘/zk S us ) A Sk_l(l - S)K_kds = (bk(F(U))

) = G OE =R
By the invariance principle, the nonparametric maximum likelihood estimator for the c.d.f.

of valuations can be obtained by applying the inverse of the mapping ¢(-) to the empirical
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distribution of the kth bid,

o~

Fuo) = 61" (Gan(o)) = 1 (G (3.4)
where 1, (7) := ¢, ' (7) for 7 € [0, 1].

As discussed earlier, the inverse mapping (+) is not Lipschitz-continuous, but its first deriv-
: _ 1 _ _ 1 1-k k—K : : 1-1
ative ¢y (1) = A N(k7K)¢k(T) (1 — ¢p(7))"=", which behaves like 7%~" for 7 close to

zero, and like (1 — 7)%=# 1! for 7 close to one which diverge to infinity if K > 1 or K — k > 2,

respectively.
We will now give a general uniform consistency result for nonlinear transformations of the
empirical c.d.f. with finitely many singularities of this form which we will then apply to the

problem of estimating the c.d.f. of valuations from data on a particular bid in n i.i.d. auctions.

Condition 3.1. Let ¢ € C*([0,1]) be bounded and suppose that (1) there are only finitely many

points Ty < 15 -+ < 74 € [0,1] such that '(7) diverges in a neighborhood of those points, (ii) there
P(r)—=¢(75)

=z %

exists finite constants A; > 0 and 01, ...,0g such that for all s =1,...,5, lim,_,

As. Also assume that ' (1) is monotone and doesn’t switch sign on any interval of the form

(174, 7F) for two adjacent singular points.

Note that by standard arguments, this condition also implies that for §; # 0, the first derivative

of ¥ (-) satisfies
Y'(r) —'(7)

=i

lim = A,
T—=TS

the same constants as in the statement of Condition 3.1.

Theorem 3.2. Suppose that Condition 3.1 holds and let § := min {51, ..., 08, %} Then the rate

T, =n"° is achievable for an estimator of the function ¥(Go(v)) with respect to the sup-norm.

See the appendix for a proof. We can now use this result to establish a uniform rate of

consistency for the estimator in (3.4):

Proposition 3.1. Suppose Assumptions 2.1 and 2.2 hold with r = 1 and ki = k. Then the

D
k1’ K—ky+1° 2

the sup-norm. In particular, if p = 0 this convergence rate is optimal in the sense of Stone
(1980).

estimator F, in equation (3.4) achieves the rate r, = n™* with A = min{ } under

Proor: By Assumption 2.1, we have that for the distribution of the observable bid B,
Ur(Gg(v; F)) = F(v) for any v € V. From the previous discussion it is straightforward to

verify that Condition 3.1 holds for the mapping vy (-) with 7 = 0, 757 = 1, §; = 1

7, and
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09 = and Ay = ——L—— Hence we can apply Theorem 3.2 with
N(k,K)R=FFT

0 = min {%, K+M}’ so that the estimator in (3.4) is uniformly consistent with rate r,, = n~

1 1
——— where A; = n
K—k+1° NEK)F

5
which is at the same time the upper bound on the rate of convergence established in Theorem

3.1 for the special case of a single observable bid for each auction o

Note that the consistency results in this section so far were only about the case of a single
observed bid per auction. However, it is straightforward to extend the argument and establish
achievability of the bound on the rate established in Theorem 3.1 by considering a procedure
which combines the estimators obtained from inverting the marginal distribution of each bid

separately.

4. AsymMPTOTIC DISTRIBUTION

Even though, as argued before, the estimation problem is not ill-posed, its linearization is in the
cases in which the second derivative of the nonparametric likelihood vanishes near the boundaries
of the support of valuations. Since Gaussian asymptotics rely on a linear approximation, there
will be a need for regularization unless we restrict our attention to linear functionals of the

valuation distribution that are

Example 4.1 ((Example 2.1, continued)). From Donsker’s theorem The empirical c.d.f., v/i(Gy(v)—
G(v)) KN N(0,G(v)(1 — G(v))) uniformly in v. The quantile transformation VY (T) := /T is
strictly monotone, uniformly continuous in T € [0,1], but the corresponding functional mapping

Vi (G) 1s not Hadamard-differentiable. From the delta rule,

Vi(Eu(v) = F(v) % N (0,G(0)(1 = G))| (G0)))

pointwise inv € (v,v). However, this convergence is generally not uniform in v, and the pointwise
approzimation becomes worse as we approach the lower bound of the support, and V) (G(v))
diverges. The fact that the variance of Gy, (v) decreases linearly in G(v) — 0 mitigates, but does

not resolve this problem as long as K > 3.

In order to address this difficulty, notice that in the proof of the functional delta method (see
e.g. Theorem 20.8 in van der Vaart (1998)), the requirement of Hadamard differentiability can

be weakened to approximability by a sequence of functions satisfying the following condition:
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Condition 4.1. (i) There is an estimator G, for Gy such that (G, — Go) = Op(1), and (ii)

for the sequence of maps ¥, there exist continuous linear maps @E; :B — T such that
T [l (9n(Go 7z ) = n(Go)) = ()

for all hy, — h such that the map 1, (Go + r; hy,) is defined.

— 0
I

In other words, if we find an an appropriate way of smoothing the mapping 1 (-) depending on
sample size, we can control the error in the linear approximation. We can then replace Hadamard
differentiability of ¢(-) in the original proof with the weaker requirement from Condition 4.1 to

obtain the same conclusion, which is stated in the following Lemma:

Lemma 4.1. Suppose Condition 4.1 holds for a sequence of mappings ¥,. Then for every
v € [v,7],
T'n(Vn(Gn) — Yn(Go)) ~ G

uniformly in v € [v,7], where G is a Brownian bridge.

We are now going to propose a regularization of the estimation problem which leads to an
asymptotically Gaussian estimator E, of Fy. For the case of one observed bid corresponding
to the kth order statistic, the nonparametric MLE is given by wk(ék,n(v)), where @kn is the
empirical c.d.f. of the kth lowest bid, and for every k = 1,..., K, ¥}.(7) := ¢, '(7) is a strictly
monotonic continuous one-to-one mapping ¥y, : [0,1] — [0, 1] from the unit interval onto itself,
which can be obtained from inverting (A.1). For any number of bidders greater than two, this
mapping is uniformly continuous, but not Lipschitz continuous on [0, 1]. Therefore, ¢ (7) is in
particular not Hadamard differentiable, so that the functional delta-rule does not apply to 1 (-)
itself.

However, it will be possible to approximate the mapping with a regularized transformation

V(T ), where SUD,¢[0,1] [0 (T, k)| < ui. More specifically, we define
() == min{r € [0,1] : Y(7) < a}
and
Ty (@) :=min {7 € [0,1] : ¢¥.(1 — 7) < }
for any « > 1, and propose the modification

aT if 7 <7 (a)
Yp(T,a) =<9 1—ar if 7>1—75(a)

at + w(T, @) (Ye(T) — aT) otherwise
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where for every o, wy,(7, @) is twice continuously differentiable in 7, wy (7 (@), o) = wj, (75 (@), @) =
0for j=1,2,0<w(r,a) < ﬁ, and wy, (%, a) = 1. This specification ensures that @Zk(G, a)
applied to any c.d.f. again yields a valid c.d.f.. Furthermore, (7, a,) is differentiable for any «
and Lipschitz with constant .

For a given choice of a,,;, we can now define the estimator from inverting the empirical c.d.f.
of the kth highest bid by

Foi(v) = Oy (Gnk(v), ank) (4.1)
for any k = kq, ..., k.. As with the estimator with trimming introduced in the previous section,

we can aggregate these r different estimators into
Fv) = 13" Fualo)
n(v) = — k(v
r s=1 ’

Compared to the estimator with trimming, this smoothed estimator has the advantage that there
are no discontinuous jumps at the boundaries of the trimming intervals, and furthermore it can
be seen easily that this estimator is guaranteed to be nondecreasing.

In order to characterize the distribution of the joint estimator, define
. 1 n r . . 1 . .
Su@) = =373 vk (G ) vk, (Gu@)) | (1{Vie, < 0} = G ) (Vi < 0} = Gu )
i=1 s,t=1

We can now give rates for the bound «,,;, of the slope that ensure a uniform Gaussian approxi-
mation to the distribution of the (regularized) estimators ﬁnk and ﬁn
Theorem 4.1. Suppose that for the reqularized estimator in equation (4.1), cuny satisfies limsup,, a,pn=> =

0 for all k = kyq, ..., k,, where \ = ZZ:? kz:l and k* := max {k, K — k+ 1}. Then the estimator

~

Fo(T) satisfies

Vi ()™ (B =BG ) ~ Gr,
a Gaussian process with covariance kernel H(vy,vy) = Gg(vi; Fo)(1 — Gk (vg; Fp)) for v1 < vy,
Furthermore, we have that the estimator ]3”

ViSa(0) 7% (Fu(v) = u(Gi(v))) 4 N(0, 1)
uniformly in v € V.
Note in particular that the rate on a,,;, implies that the " pasting points”, 75} (k) and 75, (),

converge to zero more slowly than the rates needed to achieve the optimal rate of convergence

for the estimator derived in Section 3. Also, the rate on «, is slower for small values of k, which
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is a consequence of the relative rates at which the slope and the curvature of ¢ (-) diverge as we
approach the critical points of the mapping.

The results in Theorem 4.1 can also be used to approximate the distribution of linear function-
als of the valuation distribution Fy(v) which will be discussed in more detail in the next section.
However, many functionals of Fj that are of economic interest are generally not linear, and we

will leave the distribution theory for those cases for future research.

5. FUNCTIONALS OF THE VALUATION DISTRIBUTION

In empirical research on auctions, the distribution of valuations is only of derived interest, but
the researcher may want to use an estimator for Fj to approximate other characteristics of the
auction that can be characterized as functionals of the underlying distribution. In this section,
we are going to give bounds on the rate of convergence for estimators of general linear functionals

of Fy as well as expected revenue and the optimal reserve price for an auction of arbitrary size

K.

5.1. Linear Functionals. Consider linear functionals of the valuation distribution
T(F) ::/ vw(v)F(dv)
0

for a weighting function w(v). We will also define the weighting function in terms of quantiles
of the valuation distribution,
w(T; Fp) := w(Fg (7))

Assumption 5.1. (i) There are T € [0,1] and 7 € [0, 1] such that w(7; F) does not change sign
on [0,7] or [T,1]. (ii) Furthermore, there exist constants (1,32, such that for all F € Fy the
behavior of w(t; F') is described by

lim 777w/ (1; F) < oo and lim(1 — 7) 7720/ (7; F) < o0

7—0 T—1

We can also state this condition in terms of primitive assumptions on the p.d.f.: by the chain

rule, w'(1; F) = Lw (F7(7)) = %, so that 1 depends implicitly on the tail behavior of

h(7; F') given in Assumption 2.3.

1 24p+B81  24+p+B2 }

- max{ 2 ky+p 'K—krt1ltp

Proposition 5.1. Suppose Assumptions 2.1, 2.2, and 5.1 hold. Thenr, =n
is an upper bound to the rate of convergence for estimating the linear functional T(F) = [ w(v)F(dv) =
3 F=Y(s)w(s; F)ds.



AUCTIONS WITH INCOMPLETE BIDDING DATA 15

For example, suppose that we observe the transaction price of n i.i.d. second-price auctions
with K bidders, and that we are interested in estimating the expectation of V;, w(v) = v for
ﬁ Hence if the support of V; is bounded and the p.d.f.
f(v) is bounded away from zero, ; = o = 0. Then if in addition K > 5, by Proposition 5.1, a

2

all values of v. Hence, w'(1; F) =
nonparametric estimator for the expectation of V; can at best achieve the rate r, = n~ -1,

On the other hand, if we observe all K bids for each auctions, as e.g. in the framework
of Guerre, Perrigne, and Vuong (2000), we can estimate the expected valuation directly as
the sample average of all bids across all auctions, and as expected the bound for this scenario

corresponds to a root-n rate.

5.2. Expected Revenue. Next we are going to perform the following thought experiment:
suppose we observe the kth highest bid from n repeated sealed bid second-price auctions of K
bidders with independent private values, and based on this data we want to predict expected
revenue, i.e. the expectation of the second highest bid, for an auction of the same format with
K bidders. Clearly if K = K and k = K — 1, i.e. we observe the second-highest bid for
the observed auctions, the sample average of observed bids is a root-n consistent estimator for
expected revenue even in the absence of any structural assumptions on the problem.

In all other cases, from our assumptions on the format of the auction and its equilibrium, the
distribution of the transaction price is that of the (K — 1)st order statistic in a sample of K i.i.d.
draws, and we can e.g. use an estimator of the parent c.d.f. to approximate that distribution.
Note that, in contrast to the previous case, this type of extrapolation also relies crucially on our
structural model both for the observed and the counterfactual auction.

The following result gives the bound on the rate for nonparametric estimation of the expecta-
tion of the kth highest out of K bids based on observations of the ki, ..., k.th highest bids out
of K bidders:

1 k(l4+p)+1—ay (I?fk>(1+p)+1faz}

Proposition 5.2. Suppose Assumptions 2.1-2.3 hold. Thenr, =n min{?’ Fife 0 K-krilie
1s an upper bound to the rate of convergence for estimating the expectation of the kth highest bid

in a second-price auction of K i.i.d. bidders.

It is interesting to note that in the case ky = k,. = k, this bound doesn’t rule out the possibility
that expected revenue can be estimated at root-n rate unless K is substantially smaller - less
than half as large, to be precise - than K, even though from the previous proofs, these bounds
appear to be sharp. However it is important to point out that this result does not imply root-n

estimability for expected revenue even if K > % In particular a "naive” plug-in estimator of
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expected revenue using an untrimmed estimator for the parent distribution is likely not going to

achieve that rate, though this remains to be shown formally.

5.3. Optimal Reserve Price. Suppose we observe the transaction price for n i.i.d. second-
price IPV auctions with K risk-neutral bidders, and we are interested in estimating the seller’s
optimal reserve price p* maximizing the seller’s surplus. By a standard result from auction theory

(see e.g. Riley and Samuelson (1981)), the seller’s expected profit can be written as
M) = wFK @)+ K [ () - (1= Fe) P s
p

where vy is the seller’s valuation of the object.
Clearly p* > vy for any distribution F' € Fq, so that if vg > v, then perturbations of the lower
tail of the distribution do not affect the optimal reserve price. By Theorem 3.3, the estimator

~

F,, proposed in section 3 converges to Fy at the root-n rate uniformly in v € [vg, 7], and since

7(p; F') is Lipschitz in F'(p), 7(p; F,) is also root-n consistent for m(p; Fy) uniformly in v € [vg, 7).

We can now inspect the first-order conditions for a maximum of 7(p, F),

0= d%vr(p; F) = K(wo — p) P (0) () K (1 — F(p))F<(p)

1 — F(p)
f(p)

so that the optimal reserve price does not depend on the number of bidders in the ” counterfactual”

& p= Y+

auction. It is now easy to verify that if vy < v, and for the class F{ there is no common upper
bound on the density f(v) in the lower tail of the support of V, for any 7 € [0, 1] we can find
a distribution F € F, such that p* := arg max, 7(p; F ) is at, or below the T-quantile of that
distribution, p* < F~(r).

Given that distribution F, we can perturb the distribution below the 7-quantile such that
the corresponding optimal reserve price changes by at least iT”“. Since by Lemma B.1 in the
appendix, for a sample of n i.i.d. auctions of K bidders, the smallest quantile at which we can
reliably detect such a perturbation is of the order 7, := Tn~ min{%’%ﬂp}. It is also immediate
that the rate cannot be faster than root-n, whereas the possibility of perturbations on the upper
tail does not impose further restrictions on the rate.

We can now state this observation as a formal result:

Proposition 5.3. Suppose Assumptions 2.1-2.3 hold with p = 0, and that the seller’s valuation

mind1 1
1s vg < v. Then without further restrictions on Fy, r, = n mln{?’kl} s an upper bound on

the rate of convergence for any nonparametric estimator of the optimal reserve price p* for an
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auction of K bidders from transaction price data from n i.i.d. auctions with K bidders.

. : _1
However, if vg > v, then p* can be estimated at a rate r,, =n~"z.

Note that the bound on the rate for the optimal reserve price implied by this proposition is
always slower than the parametric rate if K > 3. Also, it is clear from the argument, that shape
restrictions on the distributions in Fy can mitigate this problem, e.g. if there is a (common)
upper bound for the p.d.f. of v. Using the same argument, it is also possible to show that a
risk-neutral participant in a first-price auction who has access to incomplete bidding data from
past second-price auctions can estimate her equilibrium bid only at that same rate.

Shape restrictions on the seller’s surplus function can also be helpful to obtain faster rates for
estimators of the optimal reserve price: Suppose now that 7(p, F') is concave in p for all F' € Fy,
and that we have an estimator for Wm) such that 7Tn(p/,\F) is concave with probability 1 at
all n and is root-n consistent for 7(p; F') at every p € V. By a slight modification of Theorem
10.8 in Rockafellar (1972), pointwise convergence of a concave function at rate n'/? implies
uniform convergen(ﬁ_ai n'/2 rate, so that by Theorem 3.4.1 in van der Vaart and Wellner (1996),
~

p* = argmin,ey m,(p; F') converges to p* at the root-n rate. However note that this argument

—

doesn’t work for estimators that do not impose concavity on m,(p; F) in a given sample.

6. FIRST-PRICE AND DESCENDING BID AUCTIONS

So far, all our results were about the conceptually more straightforward case of second-price
auctions. However, one class of settings for which the problem of incomplete bidding data is
most salient are descending bid auctions. In this format, an auctioneer announces descending
sequence of prices, and the object is won by the first bidder willing to accept current price.
In particular the remaining K — 1 potential buyers do not reveal their type, so that if bidding
strategies are strictly monotone, only the bid corresponding to the highest valuation is known to
the econometrician.

Under the IPV assumption and if bidders are risk-neutral, this format is strategically equivalent
to a sealed-bid first-price auction. In this last section, we are going to show how some of our
insights for the second-price format apply to first-price, and strategically equivalent formats.

It is known from standard results in auction theory that given the valuation distribution F’,
the bidding strategy b(v; F') in a symmetric Bayesian Nash equilibrium is characterized by the

differential equation
1 F)V(v; F)
K—-1  f(v)

b(v; F) :=v — (6.1)
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We will now replace the model for the second-price sealed-bid auction from Assumption 2.1 with

a new assumption

Assumption 6.1. (First-Price Auction) Assumption 2.1 (i)-(iii) holds, and (iv’) the auction is
sealed-bid first-price or any other format that is strategically equivalent under the remaining as-
sumptions, and participants play the symmetric Bayesian Nash equilibrium with bidding functions
satisfying (6.1).

—1 v:
Now denote g(v; F') := W, the marginal distribution of bids with the corresponding

c.df. G(v;F) = F (b7 (v; F)), so that we can rewrite equation (6.1) as
) 1 G F)

Lp- ) = S ’

R = T

We can now use this characterization of the inverse bidding function and the underlying valua-

tion distribution to derive an upper bound on the convergence rate for nonparametric estimators
as defined in (3.1) and (3.2):

Proposition 6.1. Let E,, be an estimator for Fy. Then under Assumptions 2.2,2.3, and 6.1,

A s an upper bound on the rate of convergence under the sup-norm, where

A = min L Lt+p L4
2+ 1ki+p K—k.+1+p

Tpn =N

1+p P

__pP
. . 2p+1 — PP
This rate result is not sharp and can be strengthened to r; = max ( n ) ,n Fitr p K—krtitp

log n
using standard arguments on global convergence rates of nonparametric estimators, see Stone
(1983). Note that if the convergence rate is determined in the tails of the distribution, this bound
on the convergence rate is exactly the same as for second-price auctions, and the imputation for
the shedding factor in (6.2) only affects the overall bound of the rate if the tails can otherwise
be estimated with reasonable precision.

While establishing formally that the rate 7 is in fact achievable is beyond the scope of this
paper, in the case in which only the highest bid is observed, it is possible to adapt the nonpara-
metric plug-in approach from Guerre, Perrigne, and Vuong (2000) and obtain a distribution of
estimated quasi-valuations b=*(B;x; F') of the highest bidders. We now give a brief explanation
how such a procedure can be designed:

Using the formulae for p.d.f.s and c.d.f.s of order statistics one can verify that the ratio of
the c.d.f. and the c.d.f. of the highest order statistic of bids equals Grul) _ POV WF) g o)

95 (v F) f)
v € V. Hence it is possible to express the inverse bidding function directly in terms of the p.d.f.

|
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gk (v; F) and the c.d.f. GE(v; F) of the observed bid

. 1 G(bs F) 1 GE®b; F)
i = b ! bl F) = bl Y = bl KD .2
) (b F) +K—1g(bi§F) +K—1gz[§(bi;F) (62)

Hence we can estimate the sample distribution of the Kth order statistic of valuations across the

n auctions by plugging nonparametric estimators for the density and the c.d.f. of the (observed)
highest bids into this expression in a first step, and estimate the marginal c.d.f. of valuations

F(v) in a second step by inverting the distribution of the estimated quasi-valuations.

7. DISCUSSION

This paper establishes optimal rates for nonparametric estimation of the valuation distribution
from incomplete bidding data in sealed-bid second price auctions and strategic equivalents. If
the econometrician only observes the highest bid or the transaction price, these rates may be
very slow even for auctions of a moderate size. These results suggest that there may be a lot to
be gained from combining different bids or data from auctions of different sizes.

Alternatively, since the slow rates are driven entirely by the difficulty in estimating the tails of
the distribution of valuations, the performance of nonparametric estimators could be enhanced
significantly by imposing shape restrictions or a parametric structure for very low and/or high
quantiles, depending on which bids are observed. Constraints of this type can generally be
imposed in two-step procedures, see e.g. Ait-Sahalia and Duarte (2003) or Mammen and Thomas-
Agnan (1999) which can be solved at a computational cost that is of the same order as that for
the unconstrained problem. While we do not derive convergence rates for estimators imposing
these shape restrictions, we conjecture that the bounds on the rate under smoothness restrictions
p > 1 derived in section 3 may in fact be sharp.

Finally, it should be noted that the difficulties in inverting distributions of order statistics
to obtain the parent distribution also appear to apply to inference for other auction formats.
A particularly relevant case is that of descending auctions in which by construction only the
highest bidder reveals her type. Optimal rates for estimating first-price auctions when all bids
are observed have been derived by Guerre, Perrigne, and Vuong (2000), but the behavior of

nonparametric estimators with incomplete bidding data remains an open question.
APPENDIX A. JOINT DISTRIBUTION OF ORDER STATISTICS
The joint p.d.f. of the (ki,...,k,)th order statistics is given by?
it ooy (Vi F) = N (R, s KO (o))" 7 f (0 ) [F (0r,) = F o)) 797 (o)« [ = Fog, )]5 7% f (o)

%see e.g. David and Nagaraja (2003), p.12
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where N(k1,...,k K) = (kl71)!(,627,6{2!1)!__([(7&)!, Vi, < Vg, < oo+ < vg,. We can then obtain the joint c.d.f. by
integrating the joint p.d.f. from the lower bound of the support, (v,...,v) to (Vk,,..., Vg, )

GE W (ViF) = Ny, ki K / / / DI ) [F(uz) — F(wn)] 5 () ..
X 1= F(un) < f(ur) f du (A1)
= N(kl,...,kT;K)/ sh 7 (sy — sy k=l (1 — s.)ERrds, . ds
T(v)

where Z7(v) := [0, F'(vg,)] % [0, F(vky)] X -+ x [0, F(vg,.)] C [0,1]", and the second expression follows from the

change of variables formula.

APPENDIX B. PROOFS FOR UPPER BOUNDS ON THE RATE OF CONVERGENCE

We will use the notation < for ”smaller than up to a universal constant.” Choose some 75 € (0, 1) and define
_ Supyey fv(v) —1/2
supvey fy (V)

__1 _ 1
Tin = Ton~ TP and 79, = Ton~ K—kr+r be sequences of numbers between zero and one that converge to zero.

which is finite by Assumption 2.3. Also let o, = an for some positive a < min{ry,1 — 7m0},

Let ¢(t) be a nonnegative function with support [O, é] with fo v)dv = 5, sup;cp ¥(t) < %, and whose first

B )
p derivatives are bounded uniformly in ¢. In order to obtain an upper bound to the rate of convergence, we will

consider perturbations of the true p.d.f. that are of the form

fin(0) := fo(v) [1+ thjn (v)] (B.1)

for 7 = 1,2,3 where we define

wn@ = (v (A7 (3 (5 R))) = s (57 (73 (R0)=751))))

a0 = (o5 (5 (0 1+ ) (05 (55 1 5 - 1))
Y3 (V) 1 = an (¥ (Fo(v) — 70) — B3nt (1o — Fo(v)))

and the sequences f3j, are chosen in a way such that [;,(v)fo(v)dv = 0. Note that & < B, < B for all n
so that fjn(v) = fo(v) [1 +jn(v)] is a proper density. Also, the normalization by 77 ensures that the first p
derivatives of fj,(v) are uniformly bounded.

Consider a non-negative mapping o : Fo X Fo — R4, the nonnegative real numbers such that o(F, F) = 0 for
any F' € Fo. For most purposes of this paper, o(F, G) can be take to be a semi-metric on the space Fy, but we
are not going to require the mapping to be symmetric in its arguments, which is important when we analyze the

rate of convergence of functionals of the valuation distribution.?

Lemma B.1. Consider perturbations Fi, and Fa, of the c.d.f. Fy(v) that are of the form as in equation (B.1).
2 10, o(Fon, Fo) 2 702, and o(Fspn, Fo) 2 o) for all

~

Suppose that for constants y1,v2,73 > 0, o(Fin, Fo)

3A semi-metric on a space X o(z,y) is amap o : X x X — [0, 00) such that for any z,y, 2z € X (i) o(z,y) = o(y, x)
and (ii) o(z, 2) < o(z,y) + o(y, 2)-
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70 € (0,1) and § < 179. Then under Assumptions 2.1 and 2.2

a3 7

lim sup P (Q(Fn,Fo) >cn” T2 R m}) <0

and

lim lim sup P (Q(Fn,FO) >ecn mdx{ e Kk kT+P}> -1

c—0 n

PRroOF: Consider local alternatives of the form f,,(v) = f1,(v) as defined in equation (B.1). The c.d.f. Fi,(v)
corresponding to fi,(v) is given by

Fln / fO 1+w1n( ))

which is equal to Fy(v) for all v > Fy *(71,).

In order to construct the likelihood ratio, note that

Fin() L+ 704 (4, Fy (Tm Fy(v))) if 0 < Fy(v) < Bz
1n = 1— BlnTlnw (Tln F (FQ( ) %)) if TIT" < FQ(U) < Tin
fo(v) .

1 otherwise

Also note that for any pair of valuations vk, > vy,

Fln(vkt) — Fin(vg,)

1— Bt < < 1+BTpn B.2
" Fo(ok,) = Folv,) ! 2
In order to avoid an additional case distinction, we will define kg := 0, k.41 := K + 1, Vjp := inf V| and

Vir41 = supV. Note that this is without loss of generality even if the support of V' is not bounded since
the likelihood ratio only depends on the realizations of V' through the c.d.f. Fy(v), where Fy(Vig) = 0 and
Fo(Vip41) = 1.

Now by Assumptions 2.1 and 2.2, the likelihood ratio for an observation (V4,, ..., V) is given by the Radon-
Nykodym derivative
dG(Vikl, ooy Vi s )

dG(Viky, -+, Vik,; Fo)

() BEe=mte) (R A6

_ - n zk s+1 _Fn(‘/;ks) Fot1—ke=l T fn(‘/zks>
a H ( Vzks+1) _FO(Vik )) 1:[ fO(‘/iks)

s=0

Ln(Vikys - Vik,)
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Now define the random variables y;s1 := 1 {FO(‘/ikS) < TIT"} and 2 1= Il{“T" < Fo(Vik,) < Tn} fors=1,...,r,
and set x;01 := Xi11 and Xi02 = Xir+11 = Xir+12 = 0. Taking logs, we obtain

ln(‘/;kl yeeey Vikr) = log (Ln(‘/;kl yeeey Vikr))
- S (1ot (2 (- 7))

+ Xis2log (1 = BinTi, ¥ (TﬂleOil (FO(U) - Tl_") >}

+ > (ksp1 — ks — 1) (xis1 + Xis2) log
s=0

= i { Xis1Tin ¥ (Tl_,leo_l (7-1771 - FO(U))) — Xis2Bin T, ¥ (Tl_ano_l (Fo(v) - %))}

s=1
s Fr(vg,) — Fp(vk,
+ ;(kerl — ks — 1)(Xis1 + Xis2) log <FOEZ:,5; — Fo((::))) +op (7 max {1, f1n})

from a Taylor expansion of the log around 1.

From equation (B.2), we can see that if x;s1 = Xis2 = 0 for all s = 1,....7, I,(Vik,, ..., Vig,) = 0, so that
the ith observation only contributes to the likelihood ratio if V;; < 7,. Also by inspection, we can bound
’10g (%)’ < Bt} for vy, > vy, and any 7, € [0,1]. Hence, for any realization of (Vig,,..., Vix,),
b0 (Vikys -+, Vie, )| < (K +1)Br,.

Since the log-likelihood depends on the realization of (Vig,,...,Vir,.) only through the marginal quantile of
each component, it follows from a change of variables under the integral that its expectation is given by

n n

EF() Zln(‘/lkla '-7‘/’ikr) = /(vr)n Zln(vikla' "7’U’L'kr) ®”£l:l dG(v’ikla' . ,UikT;FO)
i=1 i=1
< n(K +1)Br,Er, Z(Xisl + Xis2) (ks+1 — ks)‘|
s=0
< (K +1)Br, Y kerys (B.3)

s=1
where the first inequality follows from the triangle inequality, and the last inequality uses that (yis1 + Xis2) 1S

1
nonincreasing in s with probability 1. Hence, if limsup,, m,n* > < 0o, we have

limsup Eg,|log(L,)| < C (B.4)

for a positive constant C' < co. Similarly, for a perturbation of the type f,(v) = fa,(v) we need lim sup,, Tgnn#ﬁp <
oo for (B.4) to hold.

Using (B.4), we can now adapt the argument from Stone (1980) to show that the rate implied by the sequences
T1n, and 7o, is indeed an upper bound on the rate of convergence for a nonparametric estimator of Fy(v). For
completeness of the exposition, we are now going to re-state his argument: suppose the rate 7,, was not an upper
bound on the rate of convergence. Then there would be a statistical procedure to decide between f,(v) and fo(v)

such that the limsup of the probability of a statistical error is equal to zero.
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In particular if we put prior probability % on each f, and fy, the posterior probability of f,, sis

Ly,
1+L,

Given the constant in equation (B.4), choose ¢ = (14exp(C/2))~! > 0. Then by (B.4) and the Markov Inequality

W(f = fn|{V1,,Vn}) =

Ple<n(f=ful{V1,....,Vp})<l—g) = P(5<1f2 <1—5> (B.5)

B 1 Ly, exp(C/2)
N P(1—|—exp(C/2) S1+L, 1+exp(C/2)>
= P(exp(—C/2) < L, < exp(C/2))

E|log L,,
> P(|logLy| < C/2) > 1—%
Hence, taking limits
EllogL,| 1
liminf Pr, (2 < 7 (f = ful{V1,..., Vo)) <1—¢)>1 —hmsup% >3

so that the error probability of any decision rule between Fi,, and Fp has to be at least §.
Now consider the following decision rule § between F1,, and Fj based on the candidate estimator Fn: we set
5n(13'n) = Fy if g(ﬁ'n, ) < %Q(FM, F), and 6n(ﬁ'n) = F1, otherwise. Suppose also that limsup,, Tlnnﬁ < 00.

Then by the previous argument, this decision rule must have error probability § or greater, so that

- _m 1 1 - o m 1 1 - _m
P (Q(FmFo) >cn ’“ip) Pr, (§Q(FmFo) >cn ’Cli’)) +5Pr., <§Q(FmF0) >cn ’“1>

2

L L 1 1 1 71
2 5PFO 5Q<Fn, FO) > CTp, + §]P)Fn §Q(Fn, FQ) > CTyp,

1

. 1 A €
> Q]P)Fo (5n(Fn) = Fi,) + QPFn (6n(Fn) = Fln) > 4 (B.6)
Applying the same argument to the perturbation F,, we also obtain
lim inf Pp, (Q(Fn, Fy) > cnin’czrﬂ?) > Z (B.7)

Finally, consider a perturbation of Fy(v) in the interior of V that is of the form F3,,. Note that the corresponding
statistical experiment L(V,«) is differentiable with respect to « in quadratic mean, so that by a mean-value

expansion around «g = 0, under Fj the log-likelihood satisfies
> bn(Vikys - Vikyiom) = log Lan(Vik,, -, Vik,; om) (B.8)
i=1

2

og L3n(‘/;k1 P ‘/;kT;dn)

0+a zn:ilo Lan (Vi Vi :0) 4 22 2
ni:1 Do g Lan(Vikyy -y Vik,s 2 Ja2

= Op (\/ﬁan) + naiOp(l)

where &, € [0, a,,] for all n. The score identity can also be verified in a tedious calculation which will be omitted.



24 KONRAD MENZEL AND PAOLO MORGANTI

Now choose a sequence «,, such that limsup,, v/na, < co. Then the log-likelihood ratio for an observation
(Vikys - - - Vik,.) satisfies

limsup Er, Z Ian(Vikys - - Vik,.)
n i=1

= limsupEg, |Op (vVnom) + naZOp(1)] < oo

so that by the same line of reasoning as for the first case
liminf Pp, (Q(Fn,FO) > cnf%s) > Z (B.9)
Taken together, (B.6), (B.7), and (B.9) establish the first assertion of the Lemma.
For the second part of Lemma B.1, consider a decision problem in which we put ﬁ prior probability on each
of the distributions

m

7 (Fin(v) = Fo(0)

for some M > 1 and m = 0,...,M — 1. Again following the reasoning in Stone (1980) and adapting the

Fom(v) = Fo(v) +

arguments leading to (B.3) and (B.5), we can show that the overall error probability of any procedure d,ps :

Fo = {Fnon,- - Fonrar} of classifying F' into the M points based on F, is at least 1 — % can be bounded from

below by
2

lim inf Pp, (g(ﬁn, Fy) > cn‘ﬁ) > limint Pr, (O (F) # Fo) > 1 - —
Since for any M > 1 we can pick ¢ > 0 small enough such that for large n, o(Fn1 a, Fo) > cn_%, we can make
the probability on the right-hand side of this inequality arbitrarily close to 1 as we take the limit ¢ — 0. Applying

the same argument to the perturbations Fs,, and Fj,, we establish the second claim

B.1. Proof of Theorem 3.1. : Without loss of generality, consider the case K — k. < k;. Then by Lemma B.1,
For part (a), note that by Assumption 2.3 for the local alternatives defined in (B.1), sup, ¢y |Fin(v) — Fo(v)| >

p+1.
1

. . +1. .
o Whev VO gup y [Fon(v) — Fy(v)] > 2o v VO Sang sup, ), |[Fyn(v) — Fo(v)] = and, so that for

o(F,G) := sup,cy |F(v) — G(v)|, 1 = 72 = p+ 1, so that by Lemma B.1 equations (3.1) and (3.2) hold with
rp=cn 3R R S

Next we will establish part (b). From the definition of #(-) and the lower bound on the density fo(v) from

P
Assumption 2.3, there exist n1,m2 € (0,3) and & > 0 such that «];:?V(T) Yin(v) fo(v)dv > k7FIFP for all 7 €
[71T1n, N2T1n]. Hence, we have by a change of variables

[Fin(v) — Fo(v)l[§ = j[ (Fin(v) — Fo(v))?p(dv)

/OTI" ((Fln (Fo_l(s)) — S)q h(S;Fo)_ldS

> / nngnmqsq(Hp)h(s;Fo)flds
MTin

1 — 1
2 ot

for small values of 71,, using the rates imposed in Assumption 2.3. Hence,

g—o+1 _a(+4p)—og+1
[Fin(v) = Fo(u)llg 2 7y =m0 o0

n



AUCTIONS WITH INCOMPLETE BIDDING DATA 25

We can apply an analogous argument to the perturbations Fs,, and F3, so that by Lemma B.1, conditions (3.1)
1 g(d+p)—aj+1 g(l+p)—ag+1

and (3.2) hold with r, = cn max{2’ akr¥p) (R —FeF149) J

Part (c) follows immediately from part (b) noticing that restricting the function to any compact subset A of

the interior of V), there exists a finite n (depending on A) such that the perturbations Fi,, and Fs,, coincide with

Fy on A and therefore do not impose any restrictions on the rate of convergence o

APPENDIX C. PROOF OF CONSISTENCY RESULTS
C.1. Proof of Theorem 3.2: Denote
Va(n) == {veV:|Go(v) — 7| <mn ' forall s=1,...,5}
Since 9 (7) is differentiable, at every v € V a mean-value expansion gives
6 (Guv)) = 6 (Go(v)) = ¥/ (@a(v)) (Gulv) = Go(v)) (C.1)

where G,,(v) is an intermediate value between G, (v) and Go(v). Note that in this approximation, the term
' (Gp(v)) is not guaranteed to be bounded, but G,,(v) may be arbitrarily close to 77 for some s = 1,..., S with
positive probability.

For a given choice of n > 1, we will therefore partition the sample space by defining the event
Go(v) — 75|

Gn(v) — ¥

S

An(n) = sup <npforalls=1,...,8

VvEVn ()

Also denote the event
Ban) = sup [0 (Gu(v)) = (Go(v))] > ern
UGVn(n)
We will now establish that (i) the limiting probability of A(n) can be made arbitrarily close to 1 by choosing n
sufficiently large, and that (ii) the probability of B,,(n) can be arbitrarily small for large n at least conditional on
A(n).

In order to show that lim,,_, lim, 0 P(A,(n)) = 1, consider the class F; of functions

Fon(n) := { W‘ vE Vn(n)}

with the envelope function F,s(v;n) = HueVn(n)}

= 1Go(w) -]
We can bound the norm of the envelope function by
) max{0,7 —nn~ '} 1 1 1
1Fwl? = it | R
b2 0 (t —Ts )2 min{l,7¥+nn=1} (t —Ts )2
2 1 1 1 1 2
= —min¢ —,—— % —min ; < (C.2)
nn~1 T 1 1—7"nn-1 nn—1

Using standard notation from empirical process theory (see e.g. van der Vaart and Wellner (1996)), for a given
value of € > 0 we define the bracketing number Njj(e, F,| - [|) of a class of functions F as the smallest number
of brackets [I,u] := {f : l(v) < f(v) <wu(v) for all v € V} with ||u — || < ¢ with respect to a norm || - || needed to
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cover F. Also let the entropy integral

§

for any § > 0.
Hov<vu }

For the class F,s, we can construct e-brackets of the form [I, u] with I(v) := — - Go) =]
ve{vr, vy s
H{v<vr}

miecT oA where vy, < vy satisfies [t (v)|*(Go(vr) — Go(vr)) < €2 We will first show that for
v TJL,UU s

fixed €, the bracketing number Njj(e||Fsn| P2, Fsn, || - [ p2) is uniformly bounded in n, where || f| p2 denotes the

Lo(P)-norm of f.

For notational simplicity consider only the case s = 1 with 7 = 0. Then the lowest ¢||F},||-bracket can be

and u(v) :=

chosen as described above with v = Go_l(nn_l and some vy1 > €Go(vi1) || Finllp2 = en3~3 = £. Hence the
upper bound for the next higher bracket does not decrease in n. Hence we can bound the bracketing number by
Ny(ell Fsnllp2 Fons || - [Ip2) < 1+ £, so that

1 1
I Fon La(P)) = [ 15 NEllFunl i Fons [ [ z)de < | /T Top(3) — og(elde < oo
0 0

where the finite upper bound does not depend on s =1,...,Sorn=1,2,....

Using Theorem 2.14.2 in van der Vaart and Wellner (1996), we can now bound

E| sup Gn(v)—Goiv)
veva(m Go(v) — 73

~

< V2 05(1, Fany La(P))|| Fon 2 (C.3)

where E* X denotes the outer expectation of X.

Since Jj(1, Fen, L2(P)) is finite, for any n > 1 we can use Markov’s inequality to bound

|Go(v) — 7]

PAS() = 1-P| sup = <pforalls=1,...,8
vEV, (n) Gn('U) _ 7-5*
3 }a"(v) —Go(v) +Go(v) — 75| 1
=< P inf _1
< ; vEVn(n) |Go(v) — 77| <5
= P inf L~ 29
>~ ; vEV, (1) |G0(’U) — 7-5*| — n
+ P (Slgn(an(v) - T;) }é sign(Go(v) — 7':) for some v € Vn("]))}
; Gul0) ~ Golv)] 1
i n
< 2 P inf <_
< ; veVa(n) |Go(v) — 7| — "

25Jy(1, Fen, L2(P))
(n—1)
where the last step uses Markov’s inequality together with (C.3) and (C.2). This bound on the probability can

(C.4)

be made arbitrarily small by choosing a sufficiently large value of n > 1.
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Next, we will bound the probability of B, (n). conditional on A, (n). First note that by monotonicity of ¢’ (1)

between the critical points 7, s =1,...,.5 we can bound
[0/ (Gn())] < max {[8/ (@n (o)), |8/ (Go())|} < /(57 Gov) (C5)

conditional on A, (n) for all v € V,(n).

Now define the class of functions

Hn(n) == {¢' (" Go(t)1{v < t}[t € Vu(n)}

with envelope function H, (1) := [¢'(n7*Go(v))].

Noting that for any exponent J; > 0 in Condition 3.1, [¢)' (7)| is dominated by —

P
TTS

for values of 7 close to

7*, we can use the same reasoning as before in order to establish that the bracketing integral Jyj(1, Hps, L2(P))
is bounded. In order to bound the norm of the corresponding envelope functions, let without loss of generality

0s < 1. Then for n sufficiently large, by Condition 3.1 we can bound

Ti+tTi i+

2 2 —

/ |9 (s)2ds < 2AS/ |s — 77| "2ds < 24, (n_ln)%s !
T4 it

We can now use (C.1), (C.5), and Theorem 2.14.2 in van der Vaart and Wellner (1996) to bound

E[ sup }¢(én<v>)—w<Go<v>>]|An<n>] < E s [/ Go(v)] [Guv) — Golv)
vEVn(n) vEVn(n)

< n_l/zJ[](lansuLQ(P))”HH(T/)HPJ

< 24,Jy(1, Fen, La(P))nP=~3n 7%

for n large enough.

Hence, using Markov’s Inequality together with the law of total probability and (C.4),

IN

P(Bn(n)]An(n)) + P(AS (n))

vEVn ()

P ( sup_ [ (G (v)) = (Go(v)| > )

240 Jy(1, Hon, L2(P)) | 28J4(1, Fon, La(P)

- ent o (n—1)
which can be made arbitrarily small by choosing n large enough.
Furthermore, from Condition 3.1 it follows that
sup min |7 — Go(v)| < (nn)™° (C.6)
vEV\Vn (n) TE{T], ., TE}

Since by Condition 3.1, ¥(7) is monotone on the intervals [TS* -t TS*] and [TS*, TS + nn_l] for every n and n

large enough, (C.6) and (C.6) together imply that conditional on the event A, (n) N B, (n),

sup ‘w (én(v)) — (Go(v))’ > 2en~°

vEV\Vy (n)

which completes the proof o
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APPENDIX D. PROOF OF THEOREM 4.1

Fix a value of k. We are now going to establish that for the estimator F,i the conditions of Lemma 4.1

hold. Define ¢y (7) := ¢;,* (7). Then ¢} (1) = m, and as shown in the proof of Theorem 3.1, ¥}/ (1) =
" -1

%. Also recall that ¢y (7) behaves like 7% for small values of 7 and is approximated by 7 =1 for
PR T

values of 7 sufficiently close to 1.
In particular, ¥}, (1) = O (7'%*1 for 7 — 0, and ¢ (1 —7) = O ((1 - T)ﬁil) so that for a given choice of

__k_ K—k+1
— _ E—1 L o —F%
OUnk, Tink ‘= Tfk(o‘n) =0 (ank > and Tonk = Tz*k(o‘n) =0 (an

If K =1, ¢{(r) = 0, in which case the approximation in Theorem 4.1 is trivially true without any need for

regularization, and we will therefore only consider the case £ > 2 in the remainder of this argument. Since [ljl/’“/((T)iQ
k T
diverges for k > 2 as 7 — 0 and for K —k > 2 as 7 — 1, we can bound the supremum SUD. [y, 1] [5}/((7'))]2 of
22 k T

-2

Ea

71

the ratio by a multiple 2 =77% for sufficiently small. A similar argument applies to the upper tail of the

-2

i

-
distribution.

In the following we can, without loss of generality, restrict our attention to the case in which V; is uniformly
distributed, i.e. Fy(7) = 7 for every 7 € [0,1]. Note that by assumption, lim,, TTJ—*; = ¢ < 00, potentially zero,
for j = 1,2. Then along a sequence h,, — h of functions h,, : [0,1] — R converging to h(7) with respect to the
sup-norm, where sup, ¢ (o 1 |2(7)[ := [|h[[oc < 00 and 7+ 7,k (7) is a proper c.d.f. for n large enough, we have by

a mean-value expansion in h(7)

- -1, - .
Ralho) i= sup Jri ([0KD) (Gl 4 raham) = 9u(0)) = (W' (0D ¥/ (Do)
ul VY _
= sup {rn (I04(O]) DR+ rhn (7))

- sup ra ([O4(r = raha(M)]) G (DT = raha(7)?
TE[rRhn(0),14r,hy(1)]

for n large enough, where h,,(7) takes a value between zero and h,,(7) for every value of 7.
Noting that for 7 < Ty, z/;g (1) =0, and given our previous discussion of the tail behavior of the derivatives

of ¥y (), we can now bound

an - 7 nﬁn 2 K}k 7
R,(h,) < sup (r+r 2_(;)) i Ph(T = Tnhn (7))?| + sup (r+r 2_(T)1) i (T — by (1))?
Te[Tln;%] T k TE[%,Tzn] 7O KokEl
n hn 2-% T —Tn hn 2_K72k+1 7
< su (r+r |27(;)|) - Poh(T — b (T))?| +  sup (r—r |27(T)1|) P h(T — rphn(1))?
Te[nn %] Tk TG[%,‘Qn] TO Kok
|4 KI;I

-2 12 2wty wohgi2
Tink T+ 7n Tonk Tn sup |hn(7)
T€[0,1]

IN
[\
7N
=

3o

for n large enough since by assumption sup, ¢ 1) [hn(7)| < 2sup,¢jo 7 [R(T)] +1 < oo, say. Here, r, = n"z, so

that by our assumptions on 71, and To,k, this expression goes to zero for any limiting function h(7) that satisfies
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sup,¢po,1) [2(7)| < oo. The same argument applies to linear combinations of estimators for different values of k,
so that the regularization scheme in Theorem 4.1 satisfies Condition 4.1. Hence it follows from Lemma 4.1 that

the proposed normalized estimator satisfies the uniform approximation posited in Theorem 4.1

APPENDIX E. RATES FOR FUNCTIONALS OF THE DISTRIBUTION OF VALUATIONS

E.1. Proof of Proposition 5.1. Using integration by parts, we can rewrite the functional T'(F') at F as

T(F) = /000 w(v)F(dv) = [w(v)F(v)]g" — /000 w' (v)F(v)dv

Since by Assumption 5.1, lim,_,gw(7; F') is bounded uniformly in F', and furthermore lim,_,; w(7; F) = 0 for all
F, the first term is equal to zero.
From the definition of ¥(+) and the lower bound on the density fo(v) from Assumption 2.3, there exist 11,72 €
o
(0,1) and x > 0 such that [0
perturbation Fi,(v) > Fy(v) for all v, so that by Assumption 5.1, the integrand does not change sign on the

Yin(v) fo(v)dv > kTP for all 7 € [11T1n, M2Tin]. Also by construction of the

interval [0, 71,,] for n large enough. Hence,

Fy H(min)
T(Fy) - T(R)| = / W (0) (Fin(v) — Fo(v))du| =

nf V

/071" W' (8 Fo) (Fin(Fg ' (5)) — s)ds

Y

2
2 Tlrijrﬁl

M2T1n
/ W' (s; Fy)ks'Pds
MTin

for n sufficiently large. Similarly, |T'(Fa,) — T(Fp)| = 75,7172, and |T(Fs,) — T(Fy)| = au, so that by Lemma

1 2+p+81 2+p+Bg

B.1, , conditions (3.1) and (3.2) hold with r,, =n max{ S T | o

E.2. Proof of Proposition 5.2. Note that since by assumption V' > 0 with probability 1,
Ep [V, 7] = / [1 — GE(w; F)| dv
0

By the same argument as in the proof of Proposition 5.1, we can find 7,72 € (O, %) and k£ > 0 such that

s
f.f‘f’v(T) VYin (V) fo(v)dv > KF1HP for all 7 € [n171n, NoTin]. Since Fi,(v) — Fy(v) = 0 for all v > Fo_l(ﬁn), we can

1
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write
Fy ' (mn) 7 7
Er Vig] —Er., [Vig] = /0 [Gk (v; Fr) — Gy, (U;FO)} dv
Kl Fyt(mn) _ _
= — ankl—anka—F )1 = Fy() X *| dv
G e 0 Rae)F - R - A<
_ K / [(Fln (B (o))" (1= Fun (Fy ())<= (1 = 9)F k] h(s; Fy)~'ds
ENK — k) Jo
| M2T1in o _
~K7' / [(s +rs' TPk (1—s— IQSler)K g s(1 - S)Kk] h(s; Fy)~'ds
k'(K - k)' N1Tin
T k(1+p) . -1 k(14+p)+1l—a1
> s h(s; Fo)~ " ds 2 1,
MTin

for n sufficiently large since the integrand is always nonnegative. Similarly,
[Ers. [Vig] = Er, Vgl 2 7in 00717
and
Er, [Vi.g] —Er [Vi.gll 2 an

so that the conclusion follows from Lemma B.1

E.3. Proof of Proposition 6.1. We will in a first step apply a modification of Lemma B.1 to the distribution
Go(v) of a random bid B, where the index K is drawn at random from a uniform distribution over {1,2,...,K},
the set of all bidders.

Let n, = nniﬁ and 79, ¢(-) as defined in Appendix B. In an analogous fashion as before, we define the

perturbations of the distribution of a random bid g;, (v) := go(v) [1 + ¥jn(v)] for j = 1,2,3, where
a0 = o (e (65" [t (3 - 6000)]) - (65 [ (o0 - 32)])
pan(0) = (B (657 [ (Gol0) =1 52)]) o (67 [ (1= 75— o) )
Gan(0) s = mi{ ¥ (Gy [ (70 = Go())]) = Bant (Gg ™ [ (70— Go(w))]) }

where for all j the sequence (3, is bounded between % and B and chosen in a way such that g;,(v) is a density.

Also let G, (v) be the corresponding cumulative distribution functions.

Following the same arguments as in the proof of Lemma B.1, the expectation of the absolute value of the log
likelihood ratio for the sequence of deviations G, is of the order nn?’*1 and therefore bounded as n — oo so
that the error probability of any classification procedure to distinguish between Gy and G3, is bounded away
from zero. For the deviations GG1,, and G2, the argument is identical to the original version of the Lemma. Hence,

if 0(Go,Gsy,) > 12, the conclusion of Lemma B.1 can be modified to

. _ 3 m V2
lim sup P (Q(Gm Go) > cn max{ 2P+1’k1+P’KkT+:D}> >0
n
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and

A _ e S T S ¢ S
hr%hmsupP <Q(Gn, Go) > cn max{ 2Pil7k1}rP’Kk2r+P}) -1
c—
Therefore it suffices to show that o(G1,G2) = sup,ecy |F(v; G1) — F(v; G2)| satisfies the conditions of this modi-
fication of Lemma B.1 with v =p+ 1, 72 =pand 3 =p

Fixb € V, and let 7 := Go(b). Since the bidding functions are strictly monotone in valuations, F(b=1(b; F)) =
i.e. the ordering of quantiles is preserved. For perturbation F},, note that using (6.2) and a mean value expansion,

we can write the valuation implied by bid b = G '(7) as

1 Gia(b) b 1 Go +fmw¢m() o(s)ds

) = b e ) T T R CT go®) Lt v D)
B 1 Go(b) 1 fil;fijn(s)go(s)ds _ Go(b)
= MR 1m TR { 90(d) PR (5

where g, (b) is an intermediate value between go(b) and g, (b). Also, from the bounds on the density function
f(v) in Assumption 2.3, the bidding function b(v; F') and its inverse are Lipschitz continuous for Fy and Fjs,.

Using the expansion (E.1),

Fjp (071 (03 Fj)) — Fo (b7 (3 Fy)) = Eju (b7 (b Fjn)) — Fo (b7 (b3 Fjn))
+Fy (b7 (b Fp) 4+ [b7! (b Fjn) — b7 (b Fy)]) — Fo (b7 (b Fy)) (E.2)
I Jo ) ( Jogy Gin(s)go(s)ds  Go(b)
= /0 Yin(s)go(s)ds + K—1 ( 9o(b) gn( )2 5 Vjn (D)

Now consider the perturbation Fi, and note that for any value 7 > ==, all three terms in the approximation

error in (E.2) are nonnegative, so that

\%

b~ (Gy ()i Fin)
/0 1n(5)g0(3)ds

, infuey fo(v)o FE0 ) 1 (5)g0(s)ds
K-1 go(b)

sup ‘Fln (b7" (b; Fin)) — Fo (b7 (b FO))’ > sup {
bev TE[ T ]

n TY1n (Gal(T))

2
Sup,ey 9o (v)

1
2 Tlrjp"'Tl:p"‘T P

so that 71 = p + 1. For the local alternatives F,, the argument is analogous, except that the third term of the
T¥2n (G ' (7))
sup,cy go(v)*

Similarly, we have for the perturbation F3,

approximation ‘ is of the order of 75 for 7 € [1 — Top, 1 — 7'27"} which gives us v = p

bil(Gal(T);an)
sup |F3, (v) — Fp (v)] > sup { / Y3n(8)go(s)ds
vey TG[TO,ToJrn;l] 0
infucy fo(0) [ | haty ™ van(s)an(e)ds| | Go (Go™ (7)) Y (G ()
K-1 90(b) SuPyey Jo (v )2

Vv

P+t gk
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so that 3 = p, which establishes the claim
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