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Abstract. We consider estimation of independent private auction models when only a subset

of the bids for each auction are observed. Even though many objects of interest remain nonpara-

metrically identified from incomplete bidding data, estimation of the distribution of valuations

and some of its functionals is shown to be irregular in the sense that the inverse of the mapping

from the parent distribution to that of the observable bids is not Lipschitz continuous. We derive

the optimal rate of convergence for the c.d.f. of valuations depending on the number of bidders

and which particular bids are observed for each auction. Furthermore, we propose a trimming

procedure that yields an estimator which is asymptotically Gaussian at an adaptive rate. We also

discuss implications for other functionals of the parental distribution. In particular it is shown

that expected revenue and optimal reserve price are not estimable at the root-n rate in general,

but the rates will depend on the relative sizes of the observed and the counterfactual auctions.

While most of our results are on second-price auctions, we also demonstrate how our findings

apply to first-price and descending-bid formats. Our results also suggests that imposing smooth-

ness restrictions on the underlying valuation distribution may improve large-sample behavior of

nonparametric estimators substantially.
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The distribution of bidders’ valuations is one of the primary objects of interest in the empirical

analysis of independent private values (IPV) auctions. Under the IPV assumption, auction theory

makes strong predictions on virtually any question of practical interest based on knowledge about

this distribution, which in turn is known to be nonparametrically identified under fairly general

conditions.

In this paper, we analyze asymptotic properties of nonparametric estimators for the cumulative

distribution function (c.d.f.) of valuations when bidding data is incomplete, that is if only

particular bids are observed for each auction in our sample. We find that even though the
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pointwise rate of convergence for the c.d.f. of valuations is generally the same as the rate for

the distribution function of the order statistics corresponding to the observed bids, rates with

respect to the uniform metric and the L2-norm, respectively, are considerably slower and depend

on the number of bidders, and which particular bids are observed.

Incomplete Data. There are many relevant cases in which by design only a subset of the bids

are observed even to the auctioneer. Most importantly, in descending bid (Dutch) auctions only

the winning bid is observed, whereas in the popular ascending ”button” auction format, the

auction ends when the second-highest bidder drops out, so that the highest bid is not observed.

Furthermore, in many cases and without regard to the auction format, the researcher may

only have access to a data set in which only the transaction price and/or highest bid is recorded.

In auctions for one single good, the transaction price is linked to the first or second highest

order statistic for most formats, whereas e.g. for book building in an auction of r identical units

of the good with K bids, the resulting transaction price would depend on the (K − r)th order

statistic. In the latter case, a nonparametric estimator based only on the transaction price should

be expected to do poorly in approximating both the upper and the lower tail of the valuation

distribution.

The results of this paper are also relevant for constructing bounds for the distribution of val-

uations in settings in which complete bidding data may be available, but some of the conditions

of the benchmark model for the auction are relaxed. Haile and Tamer (2003) analyze ascending

bid formats, where the highest bid recorded for a particular bidder over the course of a given

auction need not necessarily correspond to the ”idealized” bid described by the theoretical model

at hand. Their bounds are calculated by inverting the distribution of each order statistic sepa-

rately, see also Chernozhukov, Lee, and Rosen (2008) for a treatment of the statistical problem of

constructing this bound. Also in a recent study Aradillas-López, Gandhi, and Quint (2010) pro-

pose a test for correlated private values that is based on estimators for the valuation distribution

from transaction prices in auctions with different numbers of participants.

Nonparametric Approach. Beyond its practical relevance, the problem of estimating auctions

has two features that make it very appealing to theorists and empirical researchers alike: for one,

the structure of the problem is very rich and theoretically well-understood, so that given the

auction format, the only major unknown is the distribution of bidders’ valuations, F (v). If we

are willing to treat F (v) as a structural parameter, auction theory makes strong predictions

about outcomes for alternative auction formats. The other attractive characteristic of empirical
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auctions is that this ”deep” parameter F (v) is under reasonable conditions nonparametrically

identified from bidding data in a very wide range of settings.

Nonparametric identification of features of a model also allows to interpret parametric pro-

cedures as a plausible statistical approximation rather than treating the literal specification of

the model as prior knowledge, and nonparametric non-identification results are helpful to shed

light on which particular features of a parametric model used for estimation are substantive for

identification, as already argued by Roehrig (1988). However this interpretation also implies that

the properties of the corresponding nonparametric estimator are indicative of the quality of this

approximation. In this fashion, if nonparametric estimation is possible only at a very slow rate of

consistency, we should be very cautious in interpreting a root-n consistent parametric estimator

as an approximation to the more complex ”true” model.

Much of the recent literature on nonparametric estimation of auctions has focused on identifi-

cation (for a relatively recent survey see Athey and Haile (2007)), where Athey and Haile (2002)

and Komarova (2009) provide results on nonparametric identification from incomplete bidding

data, and Haile and Tamer (2003) proposed a method of constructing nonparametric bounds

on the distribution under weaker assumptions on bidding behavior by inverting the distribution

of each bid separately. Guerre, Perrigne, and Vuong (2000) derive optimal nonparametric esti-

mators for first-price auctions when all bids are observed, and in this case, the distribution of

valuations can be estimated at the usual nonparametric rate.

Description of Results. Intuitively, if we only observe the highest and/or second highest bid

in an auction with a large number of bidders, it is difficult to learn about the lower tail of the

distribution, and this is reflected by the slope of the inverse mapping that is used to recover FV (v)

from the joint distribution of bids, and which is in many cases not bounded as we approach the

lower bound of the support of the distribution of valuations. This problem affects the rate of

convergence of nonparametric estimators, which will in general depend on how ”close” any of the

observed bids are to the highest and lowest bid in each auction. The resulting rates depend on

the norm on FV , where the sup-norm leads to a slower rate than the L2 norm, and the point-wise

rate for the estimator is the same as that for the joint distribution of bids.1 We also find that the

upper bounds on convergence rates improve substantially if we require the valuation distribution

to be smooth, however standard nonparametric procedures need in general not attain the faster

rates unless these shape restrictions are imposed for estimation.

1For more standard results on optimal rates with respect to the sup- and Lp-norm in nonparametric estimation
see also Ibragimov and Has’minskii (1981) and Stone (1983)
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Since the quantile transformation linking the distribution of observed bids to the parent dis-

tribution is a continuous function on the compact set [0, 1], it is also uniformly continuous by the

Heine-Cantor theorem, so that the mapping is also continuous with respect to the total variation

norm on c.d.f.s.. In this sense, the inverse problem of recovering the parent distribution from

the joint distribution of observable bids is not ill-posed. However, in order to derive a uniformly

valid distributional approximation to the estimator, it will be necessary to regularize this inverse

because the local linearization of the problem turns out to be ill-posed even though the orig-

inal problem is not. This feature of our problem bears some resemblance with the irregularly

identified problems considered by Khan and Tamer (2009).

The slower speed of convergence for the distribution of valuations also affects the rate for

estimators of other quantities of practical interest - e.g. the optimal reserve price - which can

be calculated from FV (v). We analyze bounds on the rate of convergence for linear functionals,

expected revenue and the optimal reserve price. In particular it is shown that expected revenue

and optimal reserve price is not estimable at a root-n rate in general, but the fastest possible

rate may be significantly slower, depending on the number of bidders in the observed and the

counterfactual auctions.

Finally we show how our findings apply to nonparametric estimation of first-price auctions

with incomplete bidding data and descending bid auctions, for which by design only the highest

bid is observable. Here, the formal analysis is complicated by the fact that in equilibrium, bidders

do not directly reveal their true valuations, but adjust their bids by a factor which depends on

the underlying valuation distribution. We propose a nonparametric estimator that uses only

the highest bid for each auction and give an upper bound for the rate of convergence of any

nonparametric estimator.

Outline of Paper. We will now formally state the estimation problem analyzed in this pa-

per. Section 3 derives optimal convergence rates for nonparametric estimators of the valuation

distribution, and section 4 derives the asymptotic distribution of a regularized version of that

estimator. We then discuss how these findings affect nonparametric estimators for functionals of

the distribution of values, and section 6 shows how to extend the main rate result to the case of

first-price auctions.

2. Description of the Problem

In this paper we consider estimation when we observe data from n independent auctions in

which one indivisible object is auctioned. Each auction i = 1, . . . , n has a known number K of

bidders, and for each auction, the bidders’ valuations (V1, . . . , VK) are drawn independently from
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the distribution F0(v) ∈ F0(V) with support V ⊂ R+, where F0(V) denotes a subset of the set of

c.d.f.s on V (i.e. the set of upper semi-continuous, nondecreasing functions from Vs to the unit

interval which attain the values 0 and 1 in the closure of V).
The focus will be on symmetric independent private values (IPV) second-price auctions with

exogenous participation, but we will argue that the qualitative findings also apply to asymmetric

auctions and other auction formats. However, the independence assumption is crucial for non-

parametric identification (see Athey and Haile (2002)). The formal assumptions on the auction

format and equilibrium bids are summarized in the following assumption:

Assumption 2.1. (Second Price Auction) We observe data from n i.i.d. auctions of a single

good with K risk-neutral bidders each, where (i) participation is exogenous, and (ii) the auction

satisfies symmetric independent private values (IPV), Vi
iid∼ F0(v) for some F0 ∈ F0, where

(iii) any distribution F ∈ F0 is absolutely continuous with respect to the Lebesgue measure with

density f(v). (iv) The auction is sealed-bid second-price or a strategically equivalent format, and

participants play weakly dominant strategy with bids Bi ≡ b∗(Vi) = Vi.

In order to keep our results general, we will allow the dataset available to the econometrician

to be any r-dimensional subvector of the complete vector (Vi1, . . . , ViK) of bids:

Assumption 2.2. (Observable Bids) We observe the k1 < k2 < · · · < krth lowest bids Bi =

(Bik1 , Bik2, . . . , Bikr).

For example, if Assumption 2.1 holds, and we only record the transaction price for each of the

n auctions, the observed bids correspond to Bi = BiK−1 = ViK−1, the second highest valuation

among potential buyers in the ith auction.

We will now characterize the tail behavior of the p.d.f. of V in terms of its quantiles and define

h(τ ;F ) := f
(
F−1(τ)

)

Assumption 2.3. (Tail behavior of F0(v)) (i) The p.d.f. f(v) of Vi is bounded away from zero

in the interior of the support, and the first p derivatives of f(v) are bounded. (ii) There exist

constants α1, α2 such that for low quantiles τ , the behavior of the p.d.f. of Vi is characterized by

lim sup
τ1→0

τ−α1
1 h(τ1;F ) <∞

and in the upper tail of the distribution,

lim sup
τ2→1

(1− τ2)
−α2h(1− τ2;F ) <∞

for all F ∈ F0.
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For example, if the p.d.f. of V is bounded from above and away from zero at the lower

boundary of its support, the second part of Assumption 2.3 holds with α1 = 0, whereas if V

follows a log-normal distribution, the statement holds for α1 =
9
5
and potentially larger values.

For a given parent distribution F , denote the joint c.d.f. of the (k1, . . . , kr)th order statistics

by

G(b;F ) := Gk1,...,kr((bk1 , . . . , bkr);F ) := PF (Bk1 ≤ bk1 , . . . , Bkr ≤ bkr)

For example the c.d.f. for the k1th order statistic can be expressed as

Gk1(bk1;F ) :=

K∑

m=k1

F (bk1)
m[1− F (bk1)]

K−m =
K!

(k1 − 1)!(K − k1)!

∫ F (bk1 )

0

sk1−1(1− s)K−k1dt

whereas a pair of order statistics B(k1;K), B(k2;K), has the joint c.d.f.

Gk1,k2((bk1, bk2);F ) = N(k1, k2;K)

∫ F1

0

∫ F2

0

sk1−1
1 (s2 − s1)

k2−k1−1(1− s2)
K−k2ds2ds1 (2.1)

where N(k1, k2;K) = K!
k1!(k2−k1−1)!(K−k2)!

, and Fs := F (bks), see e.g. David and Nagaraja (2003).

We give an expression for the general case in the appendix.

Example 2.1. To frame thoughts, suppose that we observe the winning bid BKi in a sealed-bid

independent values second-price auction, which is the highest order statistic for K i.i.d. draws

from the population distribution of valuations F0(v). In this case the c.d.f. of the observed bid is

given by GK
BK

(v, F ) = [F (v)]K , and the maximum likelihood estimator for the parent distribution

is given by

F̂n(v) =
K
√
GK(v,Pn) =: φ−1

K

(
ĜnK(v)

)

where ĜnK(v) = GK(v,Pn) :=
1
n

∑n
i=1 1l

{
B

(K:K)
i ≤ v

}
is the empirical c.d.f. of BKi.

In this case, the maximum-likelihood estimator has a closed form and is guaranteed to be

non-decreasing in v. Also, from Donsker’s Theorem,
√
n(ĜK

n,K −FK) GF , a Brownian bridge,

and since in addition φK(τ) is uniformly continuous on the unit interval, the maximum likelihood

estimator F̂n(v) is uniformly consistent for F (v). However, it is important to notice that for any

K > 1, the mapping φ−1
K (τ) = K

√
τ is not Lipschitz-continuous in τ ∈ [0, 1], which will in general

affect the rates of convergence for F̂n(v) as a function, and also has implications for the limiting

distribution of F̂n(v) and other nonparametric estimators.
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3. Estimation of the c.d.f. and Optimal Rates

In this section, we are going to give bounds on the rate of convergence of the nonparametric

estimator for the parent distribution F0(v). Following Stone (1980), we say that rn is an upper

bound to the rate of convergence of F̂n under the norm ‖ · ‖ if

lim inf
n

sup
F∈F0

PF

(
‖F̂n − F‖ > crn

)
> 0 (3.1)

for any sequence of estimators {F̂n}n≥0, and

lim
c→0

lim inf
n

sup
F∈F0

PF

(
‖F̂n − F‖ > crn

)
= 1 (3.2)

These bounds are not specific to any given estimator F̂n in the problem. We will establish

these bounds on the rate of convergence by constructing a worst-case scenario in terms of a

true distribution F0 ∈ F and a local perturbation that can’t be distinguished with certainty by

any statistical procedure. In principle, this ”hardest” estimation problem may be different for

different estimators and/or different measures of distance, but it turns out that for our purposes

the form of the perturbations determining the sharpest bound on the rate is the same for all

problems we are considering.

Also, rn is called an achievable rate of convergence if we can construct a sequence {F̂n} of

estimators satisfying

lim
c→∞

lim sup
n

sup
F∈F0

PF

(
‖F̂n − F‖ > crn

)
= 0 (3.3)

If a rate rn is both achievable and an upper bound to the rate of convergence, we say that it is

the optimal rate of convergence for all nonparametric estimators of F0 ∈ F0.

The statement in equation (3.3) can be read as a requirement that the estimator normalized

by r−1
n is concentrated on a compact set with respect to the relevant norm for large samples, or

equivalently that the rescaled distance between the estimator and the estimand is asymptotically

tight.

The notion of optimality for the rate of convergence is of course very weak, and in many cases,

we will be able to construct a large number of distinct, and equally reasonable estimators all of

which achieve the optimal rate. However, for us the main purpose of establishing optimality of

a rate is to demonstrate that an upper bound on the rate is in fact sharp, and therefore a useful

measure of the difficulty of the nonparametric estimation problem at hand.
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3.1. Upper Bounds on the Rate of Convergence. In order to illustrate the main idea

behind the rates of convergence, we are first going to have a look at the setting in Example 2.1

for which we have a closed-form expression for the maximum-likelihood estimator.

Example 3.1. (Example 2.1, continued) For the problem of estimating the parent distribu-

tion from the highest order statistic, the nonparametric maximum likelihood estimator is

F̂n(v) =
K

√
ĜnK(v)

for the empirical c.d.f. of the highest bid, ĜnK. By the delta-rule, we have that the point-wise

asymptotic mean-square error of this estimator is given by

MSE
(
F̂n
(
F−1
0 (τ)

))
:= E

[(
Ĝnk

(
F−1
0 (τ)

)
−GK

(
F−1
0 (τ);F0

))2 (
GK

(
F−1
0 (τ);F0

)) 2
K
−2
]

=
1

n
(1− τK)τ 2−K

Hence if K > 2, the MSE at the τnth quantile goes to zero only if τnn
1
K → ∞. Hence it must be

true that for this estimator PF0

(
supv∈V

∣∣∣F̂n(v)− F0(v)
∣∣∣ > cn− 1

K

)
> 0 for any c > 0. Theorems

3.1 and 3.1 below imply that this is in fact also the optimal uniform rate for estimating F (v).

As this example illustrates the difficulty consists in that the inverse mapping from the distri-

bution of observable bids to the parent distribution may not be Lipschitz-continuous in some

cases, but may have divergent slope in the tails of the distribution. The problem is mitigated by

the fact that the variance of the empirical distribution decreases linearly as we move out into the

tails, but persists unless we observe bids that are close to the lowest and highest order statistics

in a sufficiently large number of auctions.

For the more general setting of n i.i.d. IPV second-price auction for which we observe a vector

(Vik1, . . . , Vikr) of r different bids, we can establish the following upper bound on the rate of

convergence:

Theorem 3.1. Let F̂n be an estimator for F0. Then under Assumptions 2.1-2.3, rn = n−λ is an

upper bound on the rate of convergence satisfying (3.1) and (3.2), where

(a) λ = min
{

p+1
k1+p

, p+1
K−kr+1+p

, 1
2

}
for the sup-norm ‖h‖∞ := supv |h(v)|,

(b) λ = min
{

1
2
,
q(1+p)−α1+1

q(k1+p)
,
q(1+p)−α2+1
q(K−kr+1+p)

}
for the Lq(µ)-norm ‖h‖q :=

(∫
h(v)qµ(dv)

)1/q
, and

(c) restricting the function to a compact subset A ⊂ V, the rate under the norm ‖ · ‖q is

rn = n1/2 for any q = 1, 2, . . . or q = ∞.
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It is important to notice that this bound depends crucially on the number K of bidders in

the auction, and on which particular bids are observed. In particular for the setting of Example

2.1, for p = 0 the upper bound on the uniform rate of convergence implied by Theorem 3.1 is

rn = n− 1
K , which is the same as the result of our informal discussion of the problem before.

Example 3.2. In order to get an intuition for the rate result, suppose we observe the k1 and k2th

order statistics, where k2 ≥ k1, and we want to distinguish whether the observed data was gen-

erated by a distribution F0 or a distribution F1 obtained by perturbing the parent distribution F0

below the τ1-quantile and above the 1− τ2-quantile, respectively. Then from the expression (2.1),

the probability of observing a realization of (Vik1 , Vik2) that is informative for a test between F0

and F1 is given by PF0

(
Vik1 ≤ F−1

0 (τ1)
)
= Gk1

(
F−1
0 (τ1);F

)
= N(k1;K)

∫ τ1
0
sk1−1(1− s)K−k1ds =

O
(
τk11

)
, whereas the probability of an observation that is relevant for a test between F0 and F2

equals PF0

(
Vik1 ≥ F−1

0 (1− τ2)
)
= N(k2;K)

∫ 1

1−τ2
sk2−1(1 − s)K−k2ds = O

(
τK−k2+1
2

)
. Hence if

either k1 > 1 or k2 < K, the probability of an observation that is informative about a small

perturbation of the tails of the distribution decreases much faster than the size of that perturba-

tion, and the uniform rate of convergence of any estimator F̂n will then be driven by the more

problematic tail of the distribution.

3.2. Consistent Estimation of the Valuation Distribution. For clarity of the exposition

we will focus on the case in which only the kth lowest bid out of K is observed. We will argue

later on in this section that this is without loss of generality for a discussion of the achievable

rate of convergence for nonparametric estimators of the valuation distribution. In particular we

will show that the upper bound on the rate in Theorem 3.1 can be achieved by an estimator

that combines the inverted empirical marginal c.d.f.s of the observed bids in a straightforward

manner.

For any k = 1, . . . , K, we will define the mapping

φk(τ) :=
K!

(k − 1)!(K − k)!

∫ τ

0

sk−1(1− s)K−kds

which is strictly increasing by inspection. From the facts about order statistics given in Appendix

A, the c.d.f. of the kth order statistic in a sample of K i.i.d. observations from a distribution F

can be written as

Gk(v;F ) := PF (Vik ≤ v) =
K!

(k − 1)!(K − k)!

∫ F (v)

0

sk−1(1− s)K−kds = φk(F (v))

By the invariance principle, the nonparametric maximum likelihood estimator for the c.d.f.

of valuations can be obtained by applying the inverse of the mapping φk(·) to the empirical



10 KONRAD MENZEL AND PAOLO MORGANTI

distribution of the kth bid,

F̂n(v) = φ−1
k

(
Ĝnk(v)

)
=: ψk

(
Ĝnk

)
(3.4)

where ψk(τ) := φ−1
k (τ) for τ ∈ [0, 1].

As discussed earlier, the inverse mapping ψk(·) is not Lipschitz-continuous, but its first deriv-
ative ψ′

k(τ) =
1

φ′
k
(ψk(τ))

= 1
N(k,K)

ψk(τ)
1−k(1 − ψk(τ))

k−K , which behaves like τ
1
k
−1 for τ close to

zero, and like (1− τ)
1

K−k+1
−1 for τ close to one which diverge to infinity if k > 1 or K − k > 2,

respectively.

We will now give a general uniform consistency result for nonlinear transformations of the

empirical c.d.f. with finitely many singularities of this form which we will then apply to the

problem of estimating the c.d.f. of valuations from data on a particular bid in n i.i.d. auctions.

Condition 3.1. Let ψ ∈ C2 ([0, 1]) be bounded and suppose that (i) there are only finitely many

points τ ∗1 < τ ∗2 · · · < τ ∗S ∈ [0, 1] such that ψ′(τ) diverges in a neighborhood of those points, (ii) there

exists finite constants As > 0 and δ1, . . . , δS such that for all s = 1, . . . , S, limτ→τ∗s

∣∣∣ψ(τ)−ψ(τ
∗

s )
|τ−τ∗s |

δs

∣∣∣ =
As. Also assume that ψ′(τ) is monotone and doesn’t switch sign on any interval of the form

(τ ∗i−1, τ
∗
i ) for two adjacent singular points.

Note that by standard arguments, this condition also implies that for δs 6= 0, the first derivative

of ψ(·) satisfies
lim
τ→τ∗s

∣∣∣∣
ψ′(τ)− ψ′(τ ∗s )

|τ − τ ∗s |δs−1

∣∣∣∣ = As

the same constants as in the statement of Condition 3.1.

Theorem 3.2. Suppose that Condition 3.1 holds and let δ := min
{
δ1, . . . , δS,

1
2

}
. Then the rate

rn = n−δ is achievable for an estimator of the function ψ(G0(v)) with respect to the sup-norm.

See the appendix for a proof. We can now use this result to establish a uniform rate of

consistency for the estimator in (3.4):

Proposition 3.1. Suppose Assumptions 2.1 and 2.2 hold with r = 1 and k1 = k. Then the

estimator F̂n in equation (3.4) achieves the rate rn = n−λ with λ = min
{

1
k1
, 1
K−kr+1

, 1
2

}
under

the sup-norm. In particular, if p = 0 this convergence rate is optimal in the sense of Stone

(1980).

Proof: By Assumption 2.1, we have that for the distribution of the observable bid Bik,

ψk(Gk(v;F )) = F (v) for any v ∈ V. From the previous discussion it is straightforward to

verify that Condition 3.1 holds for the mapping ψk(·) with τ ∗1 = 0, τ ∗2 = 1, δ1 = 1
k
, and
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δ2 =
1

K−k+1
, where A1 =

1

N(k,K)
1
k

and A2 =
1

N(k,K)
1

K−k+1
. Hence we can apply Theorem 3.2 with

δ = min
{

1
k
, 1
K−k+1

}
, so that the estimator in (3.4) is uniformly consistent with rate rn = n−δ

which is at the same time the upper bound on the rate of convergence established in Theorem

3.1 for the special case of a single observable bid for each auction �

Note that the consistency results in this section so far were only about the case of a single

observed bid per auction. However, it is straightforward to extend the argument and establish

achievability of the bound on the rate established in Theorem 3.1 by considering a procedure

which combines the estimators obtained from inverting the marginal distribution of each bid

separately.

4. Asymptotic Distribution

Even though, as argued before, the estimation problem is not ill-posed, its linearization is in the

cases in which the second derivative of the nonparametric likelihood vanishes near the boundaries

of the support of valuations. Since Gaussian asymptotics rely on a linear approximation, there

will be a need for regularization unless we restrict our attention to linear functionals of the

valuation distribution that are

Example 4.1 ((Example 2.1, continued)). From Donsker’s theorem The empirical c.d.f.,
√
n(Ĝn(v)−

G(v))
d→ N(0, G(v)(1 − G(v))) uniformly in v. The quantile transformation ψK(τ) := K

√
τ is

strictly monotone, uniformly continuous in τ ∈ [0, 1], but the corresponding functional mapping

ψK(G) is not Hadamard-differentiable. From the delta rule,

√
n(F̂n(v)− F (v))

d→ N
(
0, G(v)(1−G(v))|ψ′

K(G(v))|2
)

pointwise in v ∈ (v, v). However, this convergence is generally not uniform in v, and the pointwise

approximation becomes worse as we approach the lower bound of the support, and ψ′
K(G(v))

diverges. The fact that the variance of Ĝn(v) decreases linearly in G(v) → 0 mitigates, but does

not resolve this problem as long as K ≥ 3.

In order to address this difficulty, notice that in the proof of the functional delta method (see

e.g. Theorem 20.8 in van der Vaart (1998)), the requirement of Hadamard differentiability can

be weakened to approximability by a sequence of functions satisfying the following condition:
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Condition 4.1. (i) There is an estimator Ĝn for G0 such that rn(Ĝn − G0) = OP (1), and (ii)

for the sequence of maps ψ̃n there exist continuous linear maps ψ̃′
n : B → Γ such that

lim
n→∞

∥∥∥rn(ψ̃n(G0 + r−1
n hn)− ψ̃n(G0))− ψ̃′

n(hn)
∥∥∥
Γ
→ 0

for all hn → h such that the map ψn(G0 + r−1
n hn) is defined.

In other words, if we find an an appropriate way of smoothing the mapping ψk(·) depending on

sample size, we can control the error in the linear approximation. We can then replace Hadamard

differentiability of ψ(·) in the original proof with the weaker requirement from Condition 4.1 to

obtain the same conclusion, which is stated in the following Lemma:

Lemma 4.1. Suppose Condition 4.1 holds for a sequence of mappings ψ̃n. Then for every

v ∈ [v, v],

rn(ψ̃n(Ĝn)− ψ̃n(G0)) G

uniformly in v ∈ [v, v], where G is a Brownian bridge.

We are now going to propose a regularization of the estimation problem which leads to an

asymptotically Gaussian estimator F̂n of F0. For the case of one observed bid corresponding

to the kth order statistic, the nonparametric MLE is given by ψk(Ĝk,n(v)), where Ĝk,n is the

empirical c.d.f. of the kth lowest bid, and for every k = 1, . . . , K, ψk(τ) := φ−1
k (τ) is a strictly

monotonic continuous one-to-one mapping ψk : [0, 1] → [0, 1] from the unit interval onto itself,

which can be obtained from inverting (A.1). For any number of bidders greater than two, this

mapping is uniformly continuous, but not Lipschitz continuous on [0, 1]. Therefore, ψk(τ) is in

particular not Hadamard differentiable, so that the functional delta-rule does not apply to ψk(·)
itself.

However, it will be possible to approximate the mapping with a regularized transformation

ψ̃k(τ ;αn), where supτ∈[0,1] |ψ̃′
k(τ, αnk)| ≤ αnk. More specifically, we define

τ ∗1k(α) := min {τ ∈ [0, 1] : ψ′
k(τ) ≤ α}

and

τ ∗2k(α) := min {τ ∈ [0, 1] : ψ′
k(1− τ) ≤ α}

for any α ≥ 1, and propose the modification

ψ̃k(τ, α) :=





ατ if τ ≤ τ ∗1k(α)

1− ατ if τ ≥ 1− τ ∗2k(α)

ατ + wk(τ, α)(ψk(τ)− ατ) otherwise
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where for every α, wk(τ, α) is twice continuously differentiable in τ , wk
(
τ ∗jk(α), α

)
= w′

k

(
τ ∗jk(α), α

)
=

0 for j = 1, 2, 0 ≤ w′(τ, α) ≤ α
φ(τ)−α

, and wk
(
1
2
, α
)
= 1. This specification ensures that ψ̃k(G,α)

applied to any c.d.f. again yields a valid c.d.f.. Furthermore, ψ̃k(τ, αn) is differentiable for any α

and Lipschitz with constant α.

For a given choice of αnk, we can now define the estimator from inverting the empirical c.d.f.

of the kth highest bid by

F̂nk(v) := ψ̃k

(
Ĝnk(v), αnk

)
(4.1)

for any k = k1, . . . , kr. As with the estimator with trimming introduced in the previous section,

we can aggregate these r different estimators into

F̂n(v) :=
1

r

r∑

s=1

F̂nk(v)

Compared to the estimator with trimming, this smoothed estimator has the advantage that there

are no discontinuous jumps at the boundaries of the trimming intervals, and furthermore it can

be seen easily that this estimator is guaranteed to be nondecreasing.

In order to characterize the distribution of the joint estimator, define

Ŝn(v) :=
1

n

n∑

i=1

r∑

s,t=1

[
ψ′
ks

(
Ĝks(v)

)
ψ′
kt

(
Ĝkt(v)

)]−1 (
1l {Viks ≤ v} − Ĝks(v)

)(
1l {Vikt ≤ v} − Ĝkt(v)

)

We can now give rates for the bound αnk of the slope that ensure a uniform Gaussian approxi-

mation to the distribution of the (regularized) estimators F̂nk and F̂n

Theorem 4.1. Suppose that for the regularized estimator in equation (4.1), αnk satisfies lim supn αnkn
−λ =

0 for all k = k1, . . . , kr, where λ = 3k∗−2
4k∗−2

k∗−1
k∗

and k∗ := max {k,K − k + 1}. Then the estimator

F̂nk(τ) satisfies √
n (|ψ′

k|)
−1
(
F̂nk − ψ̃k(Gk)

)
 GF0

a Gaussian process with covariance kernel H(v1, v2) = GK(v1;F0)(1 − GK(v2;F0)) for v1 ≤ v2.

Furthermore, we have that the estimator F̂n
√
nŜn(v)

− 1
2

(
F̂nk(v)− ψ̃k(Gk(v))

)
d→ N(0, 1)

uniformly in v ∈ V.

Note in particular that the rate on αnk implies that the ”pasting points”, τ ∗1k(αnk) and τ
∗
2k(αnk),

converge to zero more slowly than the rates needed to achieve the optimal rate of convergence

for the estimator derived in Section 3. Also, the rate on αnk is slower for small values of k, which
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is a consequence of the relative rates at which the slope and the curvature of ψk(·) diverge as we
approach the critical points of the mapping.

The results in Theorem 4.1 can also be used to approximate the distribution of linear function-

als of the valuation distribution F0(v) which will be discussed in more detail in the next section.

However, many functionals of F0 that are of economic interest are generally not linear, and we

will leave the distribution theory for those cases for future research.

5. Functionals of the Valuation Distribution

In empirical research on auctions, the distribution of valuations is only of derived interest, but

the researcher may want to use an estimator for F0 to approximate other characteristics of the

auction that can be characterized as functionals of the underlying distribution. In this section,

we are going to give bounds on the rate of convergence for estimators of general linear functionals

of F0 as well as expected revenue and the optimal reserve price for an auction of arbitrary size

K̃.

5.1. Linear Functionals. Consider linear functionals of the valuation distribution

T (F ) :=

∫ ∞

0

vw(v)F (dv)

for a weighting function w(v). We will also define the weighting function in terms of quantiles

of the valuation distribution,

ω(τ ;F0) := w(F−1
0 (τ))

Assumption 5.1. (i) There are τ ∈ [0, 1] and τ̄ ∈ [0, 1] such that ω(τ ;F ) does not change sign

on [0, τ ] or [τ̄ , 1]. (ii) Furthermore, there exist constants β1, β2, such that for all F ∈ F0 the

behavior of ω(τ ;F ) is described by

lim
τ→0

τ−β1ω′(τ ;F ) <∞ and lim
τ→1

(1− τ)−β2ω′(τ ;F ) <∞

We can also state this condition in terms of primitive assumptions on the p.d.f.: by the chain

rule, ω′(τ ;F ) = d
dτ
w (F−1(τ)) =

w′(F−1(τ))
h(τ ;F )

, so that β1 depends implicitly on the tail behavior of

h(τ ;F ) given in Assumption 2.3.

Proposition 5.1. Suppose Assumptions 2.1, 2.2, and 5.1 hold. Then rn = n
−max

{

1
2
,
2+p+β1
k1+p

,
2+p+β2

K−kr+1+p

}

is an upper bound to the rate of convergence for estimating the linear functional T (F ) =
∫∞

0
w(v)F (dv) =∫ 1

0
F−1(s)ω(s;F )ds.
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For example, suppose that we observe the transaction price of n i.i.d. second-price auctions

with K bidders, and that we are interested in estimating the expectation of Vi, w(v) ≡ v for

all values of v. Hence, ω′(τ ;F ) = 1
h(τ ;F )

. Hence if the support of Vi is bounded and the p.d.f.

f(v) is bounded away from zero, β1 = β2 = 0. Then if in addition K ≥ 5, by Proposition 5.1, a

nonparametric estimator for the expectation of Vi can at best achieve the rate rn = n− 2
K−1 .

On the other hand, if we observe all K bids for each auctions, as e.g. in the framework

of Guerre, Perrigne, and Vuong (2000), we can estimate the expected valuation directly as

the sample average of all bids across all auctions, and as expected the bound for this scenario

corresponds to a root-n rate.

5.2. Expected Revenue. Next we are going to perform the following thought experiment:

suppose we observe the kth highest bid from n repeated sealed bid second-price auctions of K

bidders with independent private values, and based on this data we want to predict expected

revenue, i.e. the expectation of the second highest bid, for an auction of the same format with

K̃ bidders. Clearly if K̃ = K and k = K − 1, i.e. we observe the second-highest bid for

the observed auctions, the sample average of observed bids is a root-n consistent estimator for

expected revenue even in the absence of any structural assumptions on the problem.

In all other cases, from our assumptions on the format of the auction and its equilibrium, the

distribution of the transaction price is that of the (K̃−1)st order statistic in a sample of K̃ i.i.d.

draws, and we can e.g. use an estimator of the parent c.d.f. to approximate that distribution.

Note that, in contrast to the previous case, this type of extrapolation also relies crucially on our

structural model both for the observed and the counterfactual auction.

The following result gives the bound on the rate for nonparametric estimation of the expecta-

tion of the kth highest out of K̃ bids based on observations of the k1, . . . , krth highest bids out

of K bidders:

Proposition 5.2. Suppose Assumptions 2.1-2.3 hold. Then rn = n
−min

{

1
2
,
k(1+p)+1−α1

k1+p
,
(K̃−k)(1+p)+1−α2

K−kr+1+p

}

is an upper bound to the rate of convergence for estimating the expectation of the kth highest bid

in a second-price auction of K̃ i.i.d. bidders.

It is interesting to note that in the case k1 = kr = k, this bound doesn’t rule out the possibility

that expected revenue can be estimated at root-n rate unless K̃ is substantially smaller - less

than half as large, to be precise - than K, even though from the previous proofs, these bounds

appear to be sharp. However it is important to point out that this result does not imply root-n

estimability for expected revenue even if K̃ > K−1
2

. In particular a ”naive” plug-in estimator of
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expected revenue using an untrimmed estimator for the parent distribution is likely not going to

achieve that rate, though this remains to be shown formally.

5.3. Optimal Reserve Price. Suppose we observe the transaction price for n i.i.d. second-

price IPV auctions with K risk-neutral bidders, and we are interested in estimating the seller’s

optimal reserve price p∗ maximizing the seller’s surplus. By a standard result from auction theory

(see e.g. Riley and Samuelson (1981)), the seller’s expected profit can be written as

π(p;F ) = v0F
K(p) +K

∫ ∞

p

(vf(v)− (1− F (v)))FK−1(v)dv

where v0 is the seller’s valuation of the object.

Clearly p∗ > v0 for any distribution F ∈ F0, so that if v0 > v, then perturbations of the lower

tail of the distribution do not affect the optimal reserve price. By Theorem 3.3, the estimator

F̂n proposed in section 3 converges to F0 at the root-n rate uniformly in v ∈ [v0, v], and since

π(p;F ) is Lipschitz in F (p), π(p; F̂n) is also root-n consistent for π(p;F0) uniformly in v ∈ [v0, v].

We can now inspect the first-order conditions for a maximum of π(p, F ),

0 =
d

dp
π(p;F ) = K(v0 − p)FK−1(p)f(p)K(1− F (p))FK−1(p)

⇔ p = v0 +
1− F (p)

f(p)

so that the optimal reserve price does not depend on the number of bidders in the ”counterfactual”

auction. It is now easy to verify that if v0 ≤ v, and for the class F0 there is no common upper

bound on the density f(v) in the lower tail of the support of V , for any τ ∈ [0, 1] we can find

a distribution F̃ ∈ F0 such that p̃∗ := argmaxp π(p; F̃ ) is at, or below the τ -quantile of that

distribution, p̃∗ ≤ F̃−1(τ).

Given that distribution F̃ , we can perturb the distribution below the τ -quantile such that

the corresponding optimal reserve price changes by at least 1
4
τ p+1. Since by Lemma B.1 in the

appendix, for a sample of n i.i.d. auctions of K bidders, the smallest quantile at which we can

reliably detect such a perturbation is of the order τ1n := τ̄n
−min{ 1

2
, 1
K−2+p}. It is also immediate

that the rate cannot be faster than root-n, whereas the possibility of perturbations on the upper

tail does not impose further restrictions on the rate.

We can now state this observation as a formal result:

Proposition 5.3. Suppose Assumptions 2.1-2.3 hold with p = 0, and that the seller’s valuation

is v0 ≤ v. Then without further restrictions on F0, rn = n
−min

{

1
2
, 1
k1

}

is an upper bound on

the rate of convergence for any nonparametric estimator of the optimal reserve price p∗ for an
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auction of K̃ bidders from transaction price data from n i.i.d. auctions with K bidders.

However, if v0 > v, then p∗ can be estimated at a rate rn = n− 1
2 .

Note that the bound on the rate for the optimal reserve price implied by this proposition is

always slower than the parametric rate if K > 3. Also, it is clear from the argument, that shape

restrictions on the distributions in F0 can mitigate this problem, e.g. if there is a (common)

upper bound for the p.d.f. of v. Using the same argument, it is also possible to show that a

risk-neutral participant in a first-price auction who has access to incomplete bidding data from

past second-price auctions can estimate her equilibrium bid only at that same rate.

Shape restrictions on the seller’s surplus function can also be helpful to obtain faster rates for

estimators of the optimal reserve price: Suppose now that π(p, F ) is concave in p for all F ∈ F0,

and that we have an estimator for ̂πn(p;F ) such that ̂πn(p;F ) is concave with probability 1 at

all n and is root-n consistent for π(p;F ) at every p ∈ V. By a slight modification of Theorem

10.8 in Rockafellar (1972), pointwise convergence of a concave function at rate n1/2 implies

uniform convergence at n1/2 rate, so that by Theorem 3.4.1 in van der Vaart and Wellner (1996),

p̂∗ := argminp∈V ̂πn(p;F ) converges to p∗ at the root-n rate. However note that this argument

doesn’t work for estimators that do not impose concavity on ̂πn(p;F ) in a given sample.

6. First-Price and Descending Bid Auctions

So far, all our results were about the conceptually more straightforward case of second-price

auctions. However, one class of settings for which the problem of incomplete bidding data is

most salient are descending bid auctions. In this format, an auctioneer announces descending

sequence of prices, and the object is won by the first bidder willing to accept current price.

In particular the remaining K − 1 potential buyers do not reveal their type, so that if bidding

strategies are strictly monotone, only the bid corresponding to the highest valuation is known to

the econometrician.

Under the IPV assumption and if bidders are risk-neutral, this format is strategically equivalent

to a sealed-bid first-price auction. In this last section, we are going to show how some of our

insights for the second-price format apply to first-price, and strategically equivalent formats.

It is known from standard results in auction theory that given the valuation distribution F ,

the bidding strategy b(v;F ) in a symmetric Bayesian Nash equilibrium is characterized by the

differential equation

b(v;F ) := v − 1

K − 1

F (v)b′(v;F )

f(v)
(6.1)
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We will now replace the model for the second-price sealed-bid auction from Assumption 2.1 with

a new assumption

Assumption 6.1. (First-Price Auction) Assumption 2.1 (i)-(iii) holds, and (iv’) the auction is

sealed-bid first-price or any other format that is strategically equivalent under the remaining as-

sumptions, and participants play the symmetric Bayesian Nash equilibrium with bidding functions

satisfying (6.1).

Now denote g(v;F ) :=
f(b−1(v;F ))
b′(v;F )

, the marginal distribution of bids with the corresponding

c.d.f. G(v;F ) = F (b−1(v;F )), so that we can rewrite equation (6.1) as

b−1(b;F ) = b+
1

K − 1

G(b;F )

g(b;F )

We can now use this characterization of the inverse bidding function and the underlying valua-

tion distribution to derive an upper bound on the convergence rate for nonparametric estimators

as defined in (3.1) and (3.2):

Proposition 6.1. Let F̂n be an estimator for F0. Then under Assumptions 2.2,2.3, and 6.1,

rn = n−λ is an upper bound on the rate of convergence under the sup-norm, where

λ = min

{
p

2p+ 1
,
1 + p

k1 + p
,

p

K − kr + 1 + p

}

This rate result is not sharp and can be strengthened to r∗n = max

{(
n

logn

)− p
2p+1

, n
− 1+p

k1+p , n
− p

K−kr+1+p

}

using standard arguments on global convergence rates of nonparametric estimators, see Stone

(1983). Note that if the convergence rate is determined in the tails of the distribution, this bound

on the convergence rate is exactly the same as for second-price auctions, and the imputation for

the shedding factor in (6.2) only affects the overall bound of the rate if the tails can otherwise

be estimated with reasonable precision.

While establishing formally that the rate r∗n is in fact achievable is beyond the scope of this

paper, in the case in which only the highest bid is observed, it is possible to adapt the nonpara-

metric plug-in approach from Guerre, Perrigne, and Vuong (2000) and obtain a distribution of

estimated quasi-valuations b−1(BiK ;F ) of the highest bidders. We now give a brief explanation

how such a procedure can be designed:

Using the formulae for p.d.f.s and c.d.f.s of order statistics one can verify that the ratio of

the c.d.f. and the c.d.f. of the highest order statistic of bids equals
GK

K
(v;F )

gK
K
(v;F )

= F (v)b′(v;F )
f(v)

for all

v ∈ V. Hence it is possible to express the inverse bidding function directly in terms of the p.d.f.
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gK(v;F ) and the c.d.f. GK
K(v;F ) of the observed bid

vi := b−1(bi;F ) = bi +
1

K − 1

G(bi;F )

g(bi;F )
= bi +

1

K − 1

GK
K(bi;F )

gKK (bi;F )
(6.2)

Hence we can estimate the sample distribution of the Kth order statistic of valuations across the

n auctions by plugging nonparametric estimators for the density and the c.d.f. of the (observed)

highest bids into this expression in a first step, and estimate the marginal c.d.f. of valuations

F (v) in a second step by inverting the distribution of the estimated quasi-valuations.

7. Discussion

This paper establishes optimal rates for nonparametric estimation of the valuation distribution

from incomplete bidding data in sealed-bid second price auctions and strategic equivalents. If

the econometrician only observes the highest bid or the transaction price, these rates may be

very slow even for auctions of a moderate size. These results suggest that there may be a lot to

be gained from combining different bids or data from auctions of different sizes.

Alternatively, since the slow rates are driven entirely by the difficulty in estimating the tails of

the distribution of valuations, the performance of nonparametric estimators could be enhanced

significantly by imposing shape restrictions or a parametric structure for very low and/or high

quantiles, depending on which bids are observed. Constraints of this type can generally be

imposed in two-step procedures, see e.g. Äıt-Sahalia and Duarte (2003) or Mammen and Thomas-

Agnan (1999) which can be solved at a computational cost that is of the same order as that for

the unconstrained problem. While we do not derive convergence rates for estimators imposing

these shape restrictions, we conjecture that the bounds on the rate under smoothness restrictions

p ≥ 1 derived in section 3 may in fact be sharp.

Finally, it should be noted that the difficulties in inverting distributions of order statistics

to obtain the parent distribution also appear to apply to inference for other auction formats.

A particularly relevant case is that of descending auctions in which by construction only the

highest bidder reveals her type. Optimal rates for estimating first-price auctions when all bids

are observed have been derived by Guerre, Perrigne, and Vuong (2000), but the behavior of

nonparametric estimators with incomplete bidding data remains an open question.

Appendix A. Joint Distribution of Order Statistics

The joint p.d.f. of the (k1, . . . , kr)th order statistics is given by2

gKk1,...,kr (v;F ) = N(k1, . . . , kr;K)[F (vk1)]
k1−1f(vk1)[F (vk2)− F (vk1)]

k2−k1−1f(vk2) . . . [1− F (vkr )]
K−krf(vkr )

2see e.g. David and Nagaraja (2003), p.12
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where N(k1, . . . , kr;K) = K!
(k1−1)!(k2−k1−1)!...(K−kr)!

, vk1 ≤ vk2 ≤ · · · ≤ vkr . We can then obtain the joint c.d.f. by

integrating the joint p.d.f. from the lower bound of the support, (v, . . . , v) to (vk1 , . . . , vkr )

GKk1,...,kr (v;F ) = N(k1, . . . , kr;K)

∫ vk1

v

∫ vk2

v

. . .

∫ vkr

v

{
[F (u1)]

k1−1f(u1)[F (u2)− F (u1)]
k2−k1−1f(u2) . . .

× [1− F (ur)]
K−krf(ur)

}
du (A.1)

= N(k1, . . . , kr;K)

∫

Ir(v)

sk1−1
1 (s2 − s1)

k2−k1−1 . . . (1− sr)
K−krdsr . . . ds1

where Ir(v) := [0, F (vk1)] × [0, F (vk2)] × · · · × [0, F (vkr )] ⊂ [0, 1]r, and the second expression follows from the

change of variables formula.

Appendix B. Proofs for Upper Bounds on the Rate of Convergence

We will use the notation . for ”smaller than up to a universal constant.” Choose some τ0 ∈ (0, 1) and define

B :=
supv∈V fV (v)

supv∈V fV (v) which is finite by Assumption 2.3. Also let αn = an−1/2 for some positive a < min{τ0, 1− τ0},
τ1n = τ0n

− 1
k1+p and τ2n = τ0n

− 1
K−kr+p be sequences of numbers between zero and one that converge to zero.

Let ψ(t) be a nonnegative function with support
[
0, 12

]
with

∫ 1
2

0 ψ (v) dv = 1
2 , supt∈R

ψ(t) < 1
B , and whose first

p derivatives are bounded uniformly in t. In order to obtain an upper bound to the rate of convergence, we will

consider perturbations of the true p.d.f. that are of the form

fjn(v) := f0(v) [1 + ψjn(v)] (B.1)

for j = 1, 2, 3 where we define

ψ1n(v) : = τp1n

(
ψ
(
F−1
0

(
τ−1
1n

(τ1n
2

− F0(v)
)))

− β1nψ
(
F−1
0

(
τ−1
1n

(
F0(v)−

τ1n
2

))))

ψ2n(v) : = τp2n

(
ψ
(
F−1
0

(
τ−1
2n

(
F0(v)− 1 +

τ2n
2

)))
− β2nψ

(
F−1
0

(
τ−1
2n

(
1− τ2n

2
− F0(v)

))))

ψ3n(v) : = αn (ψ (F0(v) − τ0)− β3nψ (τ0 − F0(v)))

and the sequences βjn are chosen in a way such that
∫
ψjn(v)f0(v)dv = 0. Note that 1

B ≤ βjn ≤ B for all n

so that fjn(v) = f0(v) [1 + ψjn(v)] is a proper density. Also, the normalization by τpjn ensures that the first p

derivatives of fjn(v) are uniformly bounded.

Consider a non-negative mapping % : F0 ×F0 → R+, the nonnegative real numbers such that %(F, F ) = 0 for

any F ∈ F0. For most purposes of this paper, %(F,G) can be take to be a semi-metric on the space F0, but we

are not going to require the mapping to be symmetric in its arguments, which is important when we analyze the

rate of convergence of functionals of the valuation distribution.3

Lemma B.1. Consider perturbations F1n and F2n of the c.d.f. F0(v) that are of the form as in equation (B.1).

Suppose that for constants γ1, γ2, γ3 > 0, %(F1n, F0) & τγ1n , %(F2n, F0) & τγ2n , and %(F3n, F0) & αγ3n for all

3A semi-metric on a space X %(x, y) is a map % : X×X → [0,∞) such that for any x, y, z ∈ X (i) %(x, y) = %(y, x)
and (ii) %(x, z) ≤ %(x, y) + %(y, z).
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τ0 ∈ (0, 1) and δ < τ0. Then under Assumptions 2.1 and 2.2

lim sup
n

P

(
%(F̂n, F0) > cn

−max
{

γ3
2 ,

γ1
k1+p

,
γ2

K−kr+p

}
)
> 0

and

lim
c→0

lim sup
n

P

(
%(F̂n, F0) > cn

−max
{

γ3
2 ,

γ1
k1+p

,
γ2

K−kr+p

}
)

= 1

Proof: Consider local alternatives of the form fn(v) = f1n(v) as defined in equation (B.1). The c.d.f. F1n(v)

corresponding to f1n(v) is given by

F1n(v) :=

∫ v

0

f0(s)(1 + ψ1n(s))ds

which is equal to F0(v) for all v > F−1
0 (τ1n).

In order to construct the likelihood ratio, note that

f1n(v)

f0(v)
=





1 + τp1nψ
(
τ−1
1n F

−1
0

(
τ1n
2 − F0(v)

))
if 0 ≤ F0(v) <

τ1n
2

1− β1nτ
p
1nψ

(
τ−1
1n F

−1
0

(
F0(v)− τ1n

2

))
if τ1n2 ≤ F0(v) < τ1n

1 otherwise

Also note that for any pair of valuations vkt > vks ,

1−Bτp1n ≤ F1n(vkt)− F1n(vks)

F0(vkt)− F0(vks)
≤ 1 +Bτp1n (B.2)

In order to avoid an additional case distinction, we will define k0 := 0, kr+1 := K + 1, Vi0 := inf V , and
Vir+1 := supV . Note that this is without loss of generality even if the support of V is not bounded since

the likelihood ratio only depends on the realizations of V through the c.d.f. F0(v), where F0(Vi0) = 0 and

F0(Vir+1) = 1.

Now by Assumptions 2.1 and 2.2, the likelihood ratio for an observation (Vk1 , . . . , Vkr ) is given by the Radon-

Nykodym derivative

Ln(Vik1 , . . . , Vikr ) =
dG(Vik1 , . . . , Vikr ;Fn)

dG(Vik1 , . . . , Vikr ;F0)

=

(
Fn(Vik1 )

F0(Vik1 )

)k1−1(
Fn(Vik2 )− Fn(Vik1 )

F0(Vik2 )− F0(Vik1 )

)k2−k1−1

. . .

(
1− Fn(Vikr )

1− F0(Vikr )

)K−kr r∏

s=1

fn(Viks )

f0(Viks )

=

r∏

s=0

(
Fn(Viks+1)− Fn(Viks )

F0(Viks+1)− F0(Viks )

)ks+1−ks−1 r∏

s=1

fn(Viks)

f0(Viks)
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Now define the random variables χis1 := 1l
{
F0(Viks) <

τ1n
2

}
and χis2 := 1l

{
τ1n
2 ≤ F0(Viks) < τn

}
for s = 1, . . . , r,

and set χi01 := χi11 and χi02 = χir+11 = χir+12 = 0. Taking logs, we obtain

ln(Vik1 , . . . , Vikr ) := log (Ln(Vik1 , . . . , Vikr ))

=

r∑

s=1

{
χis1 log

(
1 + τp1nψ

(
τ−1
1n F

−1
0

(τ1n
2

− F0(v)
)))

+ χis2 log
(
1− β1nτ

p
1nψ

(
τ−1
1n F

−1
0

(
F0(v) −

τ1n
2

)))}

+

r∑

s=0

(ks+1 − ks − 1)(χis1 + χis2) log

(
Fn(vkt)− Fn(vks)

F0(vkt)− F0(vks)

)

=
r∑

s=1

{
χis1τ

p
1nψ

(
τ−1
1n F

−1
0

(τ1n
2

− F0(v)
))

− χis2β1nτ
p
1nψ

(
τ−1
1n F

−1
0

(
F0(v)−

τ1n
2

))}

+

r∑

s=0

(ks+1 − ks − 1)(χis1 + χis2) log

(
Fn(vkt)− Fn(vks)

F0(vkt)− F0(vks)

)
+ oP (τp1nmax {1, β1n})

from a Taylor expansion of the log around 1.

From equation (B.2), we can see that if χis1 = χis2 = 0 for all s = 1, . . . , r, ln(Vik1 , . . . , Vikr ) = 0, so that

the ith observation only contributes to the likelihood ratio if Vi1 < τ1n. Also by inspection, we can bound∣∣∣log
(
Fn(vkt )−Fn(vks )

F0(vkt )−F0(vks )

)∣∣∣ ≤ Bτp1n for vkt > vks and any τn ∈ [0, 1]. Hence, for any realization of (Vik1 , . . . , Vikr ),

|ln(Vik1 , . . . , Vikr )| ≤ (K + 1)Bτp1n.

Since the log-likelihood depends on the realization of (Vik1 , . . . , Vikr ) only through the marginal quantile of

each component, it follows from a change of variables under the integral that its expectation is given by

EF0

∣∣∣∣∣

n∑

i=1

ln(Vik1 , . . . , Vikr )

∣∣∣∣∣ =

∫

(Vr)n

∣∣∣∣∣

n∑

i=1

ln(vik1 , . . . , vikr )

∣∣∣∣∣⊗
n
i=1 dG(vik1 , . . . , vikr ;F0)

≤ n(K + 1)Bτp1nEF0

[
r∑

s=0

(χis1 + χis2)(ks+1 − ks)

]

≤ 2n(K + 1)Bτp1n

r∑

s=1

ksτ
ks
1n (B.3)

where the first inequality follows from the triangle inequality, and the last inequality uses that (χis1 + χis2) is

nonincreasing in s with probability 1. Hence, if lim supn τ1nn
1

k1+p <∞, we have

lim sup
n

EF0 | log(Ln)| < C (B.4)

for a positive constantC <∞. Similarly, for a perturbation of the type fn(v) = f2n(v) we need lim supn τ2nn
1

K−kr+p <

∞ for (B.4) to hold.

Using (B.4), we can now adapt the argument from Stone (1980) to show that the rate implied by the sequences

τ1n and τ2n is indeed an upper bound on the rate of convergence for a nonparametric estimator of F0(v). For

completeness of the exposition, we are now going to re-state his argument: suppose the rate τn was not an upper

bound on the rate of convergence. Then there would be a statistical procedure to decide between fn(v) and f0(v)

such that the limsup of the probability of a statistical error is equal to zero.
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In particular if we put prior probability 1
2 on each fn and f0, the posterior probability of fn sis

π (f = fn|{V1, . . . ,Vn}) =
Ln

1 + Ln

Given the constant in equation (B.4), choose ε = (1+exp(C/2))−1 > 0. Then by (B.4) and the Markov Inequality

P (ε < π (f = fn|{V1, . . . ,Vn}) < 1− ε) = P

(
ε <

Ln
1 + Ln

< 1− ε

)
(B.5)

= P

(
1

1 + exp(C/2)
<

Ln
1 + Ln

<
exp(C/2)

1 + exp(C/2)

)

= P (exp(−C/2) < Ln < exp(C/2))

≥ P (| logLn| < C/2) ≥ 1− E| logLn|
C

Hence, taking limits

lim inf
n

PF0 (ε < π (f = fn|{V1, . . . ,Vn}) < 1− ε) ≥ 1− lim sup
n

E| logLn|
C

>
1

2

so that the error probability of any decision rule between F1n and F0 has to be at least ε
4 .

Now consider the following decision rule δ between F1n and F0 based on the candidate estimator F̂n: we set

δn(F̂n) := F0 if %(F̂n, F0) <
1
2%(F1n, F0), and δn(F̂n) = F1n otherwise. Suppose also that lim supn τ1nn

1
k1+p <∞.

Then by the previous argument, this decision rule must have error probability ε
4 or greater, so that

P
(
%(F̂n, F0) > cn−

γ1
k1+p

)
≥ 1

2
PF0

(
1

2
%(F̂n, F0) > cn−

γ1
k1+p

)
+

1

2
PF1n

(
1

2
%(F̂n, F0) > cn−

γ1
k1

)

≥ 1

2
PF0

(
1

2
%(Fn, F0) > cτγ11n

)
+

1

2
PFn

(
1

2
%(Fn, F0) > cτγ11n

)

≥ 1

2
PF0(δn(F̂n) = F1n) +

1

2
PFn

(δn(F̂n) = F1n) >
ε

4
(B.6)

Applying the same argument to the perturbation F2n, we also obtain

lim inf
n

PF0

(
%(F̂n, F0) > cn−

γ2
K−kr+p

)
>
ε

4
(B.7)

Finally, consider a perturbation of F0(v) in the interior of V that is of the form F3n. Note that the corresponding

statistical experiment L(V, α) is differentiable with respect to α in quadratic mean, so that by a mean-value

expansion around α0 = 0, under F0 the log-likelihood satisfies

n∑

i=1

ln(Vik1 , . . . , Vikr ;αn) = logL3n(Vik1 , . . . , Vikr ;αn) (B.8)

= 0 + αn

n∑

i=1

∂

∂α
logL3n(Vik1 , . . . , Vikr ; 0) +

α2
n

2

∂2

∂α2
logL3n(Vik1 , . . . , Vikr ; ᾱn)

= OP
(√
nαn

)
+ nα2

nOP (1)

where ᾱn ∈ [0, αn] for all n. The score identity can also be verified in a tedious calculation which will be omitted.
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Now choose a sequence αn such that lim supn
√
nαn < ∞. Then the log-likelihood ratio for an observation

(Vik1 , . . . , Vikr ) satisfies

lim sup
n

EF0

∣∣∣∣∣

n∑

i=1

l3n(Vik1 , . . . , Vikr )

∣∣∣∣∣ = lim sup
n

EF0

∣∣OP
(√
nαn

)
+ nα2

nOP (1)
∣∣ <∞

so that by the same line of reasoning as for the first case

lim inf
n

PF0

(
%(F̂n, F0) > cn−

γ3
2

)
>
ε

4
(B.9)

Taken together, (B.6), (B.7), and (B.9) establish the first assertion of the Lemma.

For the second part of Lemma B.1, consider a decision problem in which we put 1
M prior probability on each

of the distributions

Fnm,M (v) = F0(v) +
m

M − 1
(F1n(v)− F0(v))

for some M > 1 and m = 0, . . . ,M − 1. Again following the reasoning in Stone (1980) and adapting the

arguments leading to (B.3) and (B.5), we can show that the overall error probability of any procedure δnM :

F0 → {Fn0,M , . . . , FnM,M} of classifying F into the M points based on F̂n is at least 1− 2
M can be bounded from

below by

lim inf
n

PF0

(
%(F̂n, F0) > cn−

γ1
k1+p

)
≥ lim inf

n
PF0(δnM (F̂n) 6= F0) > 1− 2

M

Since for any M > 1 we can pick c > 0 small enough such that for large n, %(Fn1,M , F0) > cn−
γ1

k1+p , we can make

the probability on the right-hand side of this inequality arbitrarily close to 1 as we take the limit c→ 0. Applying

the same argument to the perturbations F2n and F3n, we establish the second claim �

B.1. Proof of Theorem 3.1. : Without loss of generality, consider the case K− kr ≤ k1. Then by Lemma B.1,

For part (a), note that by Assumption 2.3 for the local alternatives defined in (B.1), supv∈V |F1n(v)−F0(v)| ≥
τp+1
1n infv∈V fV (v)

2 , supv∈V |F2n(v) − F0(v)| ≥ τp+1
2n infv∈V fV (v)

B , and supv∈V |F3n(v) − F0(v)| = αnδ, so that for

%(F,G) := supv∈V |F (v) − G(v)|, γ1 = γ2 = p + 1, so that by Lemma B.1 equations (3.1) and (3.2) hold with

rn = cn
−max

{

1
2 ,

p+1
k1+p

, p+1
K−kr+p

}

.

Next we will establish part (b). From the definition of ψ(·) and the lower bound on the density f0(v) from

Assumption 2.3, there exist η1, η2 ∈
(
0, 12
)
and κ > 0 such that

∫ F−1
0 (τ̃)

inf V ψjn(v)f0(v)dv > κτ̃1+p for all τ̃ ∈
[η1τ1n, η2τ1n]. Hence, we have by a change of variables

‖F1n(v)− F0(v)‖qq =

∫ ∞

−∞

(F1n(v)− F0(v))
qµ(dv)

=

∫ τ1n

0

(
(F1n

(
F−1
0 (s)

)
− s
)q
h(s;F0)

−1ds

≥
∫

η1τ1n

η2τ1nκ
qsq(1+p)h(s;F0)

−1ds

& τ
q(1+p)−α1+1
1n

for small values of τ1n using the rates imposed in Assumption 2.3. Hence,

‖F1n(v)− F0(v)‖q & τ
q−α1+1

q

1n � n
−

q(1+p)−α1+1

q(k1+p)
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We can apply an analogous argument to the perturbations F2n and F3n so that by Lemma B.1, conditions (3.1)

and (3.2) hold with rn = cn
−max

{

1
2 ,

q(1+p)−α1+1

q(k1+p) ,
q(1+p)−α2+1

q(K−kr+1+p)

}

.

Part (c) follows immediately from part (b) noticing that restricting the function to any compact subset A of

the interior of V , there exists a finite n (depending on A) such that the perturbations F1n and F2n coincide with

F0 on A and therefore do not impose any restrictions on the rate of convergence �

Appendix C. Proof of Consistency Results

C.1. Proof of Theorem 3.2: Denote

Vn(η) :=
{
v ∈ V : |G0(v)− τ∗s | ≤ ηn−1 for all s = 1, . . . , S

}

Since ψ(τ) is differentiable, at every v ∈ V a mean-value expansion gives

ψ
(
Ĝn(v)

)
− ψ (G0(v)) = ψ′(Gn(v))

(
Ĝn(v)−G0(v)

)
(C.1)

where Gn(v) is an intermediate value between Ĝn(v) and G0(v). Note that in this approximation, the term

ψ′(Gn(v)) is not guaranteed to be bounded, but Gn(v) may be arbitrarily close to τ∗s for some s = 1, . . . , S with

positive probability.

For a given choice of η > 1, we will therefore partition the sample space by defining the event

An(η) :=



 sup
v∈Vn(η)

|G0(v)− τ∗s |∣∣∣Ĝn(v)− τ∗s

∣∣∣
≤ η for all s = 1, . . . , S





Also denote the event

Bn(η) :=
{

sup
v∈Vn(η)

∣∣∣ψ
(
Ĝn(v)

)
− ψ (G0(v))

∣∣∣ > crn

}

We will now establish that (i) the limiting probability of A(η) can be made arbitrarily close to 1 by choosing η

sufficiently large, and that (ii) the probability of Bn(η) can be arbitrarily small for large η at least conditional on

A(η).

In order to show that limη→∞ limn→0 P(An(η)) = 1, consider the class Fs of functions

Fsn(η) :=
{
1l {v ∈ (−∞, v]}
|G0(v)− τ∗s |

∣∣∣∣ v ∈ Vn(η)
}

with the envelope function Fns(v; η) =
1l{v∈Vn(η)}
|G0(v)−τ∗

s |
.

We can bound the norm of the envelope function by

‖Fns(η)‖2P,2 =

∫ max{0,τ∗
s −ηn

−1}

0

1

(t− τ∗s )
2
dt+

∫ 1

min{1,τ∗
s +ηn

−1}

1

(t− τ∗s )
2
dt

=
2

ηn−1
−min

{
1

τ∗s
,

1

ηn−1

}
−min

{
1

1− τ∗s
,

1

ηn−1

}
≤ 2

ηn−1
(C.2)

Using standard notation from empirical process theory (see e.g. van der Vaart and Wellner (1996)), for a given

value of ε > 0 we define the bracketing number N[](ε,F , ‖ · ‖) of a class of functions F as the smallest number

of brackets [l, u] := {f : l(v) ≤ f(v) ≤ u(v) for all v ∈ V} with ‖u− l‖ < ε with respect to a norm ‖ · ‖ needed to
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cover F . Also let the entropy integral

J[](δ,F , ‖ · ‖) :=
∫ δ

0

√
1 + logN[](ε‖F‖,F , ‖ · ‖)dε

for any δ > 0.

For the class Fns, we can construct ε-brackets of the form [l, u] with l(v) := 1l{v≤vU}
minv∈{vL,vU} |G0(v)−τ∗

s |
and u(v) :=

1l{v≤vL}
minv∈{vL,vU} |G0(v)−τ∗

s |
where vL < vU satisfies |ψ′(vL)|2(G0(vU ) − G0(vL)) < ε2. We will first show that for

fixed ε, the bracketing number N[](ε‖Fsn‖P,2,Fsn, ‖ · ‖P,2) is uniformly bounded in n, where ‖f‖P,2 denotes the

L2(P )-norm of f .

For notational simplicity consider only the case s = 1 with τ∗1 = 0. Then the lowest ε‖Fsn‖-bracket can be

chosen as described above with vL1 = G−1
0 (ηn−1 and some vU1 ≥ εG0(vL1)‖F1n‖P,2 = εn

1
2−

1
2 = ε. Hence the

upper bound for the next higher bracket does not decrease in n. Hence we can bound the bracketing number by

N[](ε‖Fsn‖P,2,Fsn, ‖ · ‖P,2) ≤ 1 + 1
ε , so that

J[](1,Fsn, L2(P )) =

∫ 1

0

√
1 +N[](ε‖Fsn‖P,2,Fsn, ‖ · ‖P,2)dε ≤

∫ 1

0

√
1 + log(3)− log(ε)dε <∞

where the finite upper bound does not depend on s = 1, . . . , S or n = 1, 2, . . . .

Using Theorem 2.14.2 in van der Vaart and Wellner (1996), we can now bound

E
∗

∣∣∣∣∣ sup
v∈Vn(η)

Ĝn(v)−G0(v)

G0(v)− τ∗s

∣∣∣∣∣ . n
−1/2J[](1,Fsn, L2(P ))‖Fsn‖P,2 (C.3)

where E∗X denotes the outer expectation of X .

Since J[](1,Fsn, L2(P )) is finite, for any η > 1 we can use Markov’s inequality to bound

P
(
AC
n (η)

)
= 1− P


 sup
v∈Vn(η)

|G0(v) − τ∗s |∣∣∣Ĝn(v) − τ∗s

∣∣∣
≤ η for all s = 1, . . . , S




≤
S∑

s=1

P


 inf
v∈Vn(η)

∣∣∣Ĝn(v)−G0(v) +G0(v)− τ∗s

∣∣∣
|G0(v)− τ∗s |

≤ 1

η




≤
S∑

s=1



P


 inf
v∈Vn(η)

∣∣∣Ĝn(v)−G0(v)
∣∣∣

|G0(v)− τ∗s |
≤ 1

η
− 1




+ P
(
sign(Ĝn(v)− τ∗s ) 6= sign(G0(v) − τ∗s ) for some v ∈ Vn(η)

)}

≤ 2

S∑

s=1

P


 inf
v∈Vn(η)

∣∣∣Ĝn(v) −G0(v)
∣∣∣

|G0(v)− τ∗s |
≤ −η − 1

η




.
2SJ[](1,Fsn, L2(P ))

(η − 1)
(C.4)

where the last step uses Markov’s inequality together with (C.3) and (C.2). This bound on the probability can

be made arbitrarily small by choosing a sufficiently large value of η > 1.
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Next, we will bound the probability of Bn(η). conditional on An(η). First note that by monotonicity of ψ′(τ)

between the critical points τ∗s , s = 1, . . . , S we can bound

|ψ′(Ḡn(v))| ≤ max
{
|ψ′(Ĝn(v))|, |ψ′(G0(v))|

}
≤ |ψ′(η−1G0(v)) (C.5)

conditional on An(η) for all v ∈ Vn(η).
Now define the class of functions

Hn(η) :=
{
ψ′(η−1G0(t))1l {v ≤ t}

∣∣ t ∈ Vn(η)
}

with envelope function Hn(η) := |ψ′(η−1G0(v))|.
Noting that for any exponent δs > 0 in Condition 3.1, |ψ′ (τ) | is dominated by 1

τ−τ∗
s
for values of τ close to

τ∗, we can use the same reasoning as before in order to establish that the bracketing integral J[](1,Hns, L2(P ))

is bounded. In order to bound the norm of the corresponding envelope functions, let without loss of generality

δs < 1. Then for n sufficiently large, by Condition 3.1 we can bound

∫ τ∗
s +τ∗

s+1
2

τ∗
s +ηn

−1

|ψ′(s)|2ds ≤ 2As

∫ τ∗
s +τ∗

s+1
2

τ∗
s +ηn

−1

|s− τ∗s |2δs−2ds ≤ 2As
(
n−1η

)2δs−1

We can now use (C.1), (C.5), and Theorem 2.14.2 in van der Vaart and Wellner (1996) to bound

E

[
sup

v∈Vn(η)

∣∣∣ψ
(
Ĝn(v)

)
− ψ (G0(v))

∣∣∣
∣∣∣∣∣An(η)

]
≤ E sup

v∈Vn(η)

∣∣ψ′(η−1G0(v))
∣∣
∣∣∣Ĝn(v) −G0(v)

∣∣∣

≤ n−1/2J[](1,Hns, L2(P ))‖Hn(η)‖P,2
≤ 2AsJ[](1,Fsn, L2(P ))η

δs−
1
2n−δs

for n large enough.

Hence, using Markov’s Inequality together with the law of total probability and (C.4),

P

(
sup

v∈Vn(η)

∣∣∣ψ
(
Ĝn(v)

)
− ψ (G0(v))

∣∣∣ > crn

)
≤ P(Bn(η)|An(η)) + P(AC

n (η))

≤ 2AsJ[](1,Hsn, L2(P ))

cη1−δs
+

2SJ[](1,Fsn, L2(P ))

(η − 1)

which can be made arbitrarily small by choosing η large enough.

Furthermore, from Condition 3.1 it follows that

sup
v∈V\Vn(η)

min
τ∈{τ∗

1 ,...,τ
∗
S}

|τ −G0(v)| ≤ (ηn)
−δ

(C.6)

Since by Condition 3.1, ψ(τ) is monotone on the intervals
[
τ∗s − ηn−1, τ∗s

]
and

[
τ∗s , τ

∗
s + ηn−1

]
for every η and n

large enough, (C.6) and (C.6) together imply that conditional on the event An(η) ∩ Bn(η),

sup
v∈V\Vn(η)

∣∣∣ψ
(
Ĝn(v)

)
− ψ (G0(v))

∣∣∣ > 2cn−δ

which completes the proof �
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Appendix D. Proof of Theorem 4.1

Fix a value of k. We are now going to establish that for the estimator F̂nk the conditions of Lemma 4.1

hold. Define ψk(τ) := φ−1
k (τ). Then ψ′

k(τ) = 1
φ′
k
(φ−1

k
(τ))

, and as shown in the proof of Theorem 3.1, ψ′′
k (τ) =

φ′′
k (φ

−1
k

(τ))

[φ′
k
(φ−1

k
(τ))]3

. Also recall that ψk(τ) behaves like τ
1
k for small values of τ and is approximated by τ

1
K−k+1 for

values of τ sufficiently close to 1.

In particular, ψ′
k(τ) = O

(
τ

1
k
−1
)
for τ → 0, and ψ′

k(1 − τ) = O
(
(1− τ)

1
K−k

−1
)
so that for a given choice of

αnk, τ1nk := τ∗1k(αn) = O

(
α
− k

k−1

nk

)
and τ2nk := τ∗2k(αn) = O

(
α
−K−k+1

K−k
n

)
.

If K = 1, ψ′′
1 (τ) = 0, in which case the approximation in Theorem 4.1 is trivially true without any need for

regularization, and we will therefore only consider the case k ≥ 2 in the remainder of this argument. Since
ψ′′

k (τ)

[ψ′
k
(τ)]2

diverges for k ≥ 2 as τ → 0 and for K − k ≥ 2 as τ → 1, we can bound the supremum supτ∈[τ1, 12 ]

∣∣∣∣
ψ′′

k (τ)

[ψ′
k
(τ)]2

∣∣∣∣ of

the ratio by a multiple 2
τ

1
k

−2

1

τ
2
k

−2

1

= τ−
1
k for τ1 sufficiently small. A similar argument applies to the upper tail of the

distribution.

In the following we can, without loss of generality, restrict our attention to the case in which Vi is uniformly

distributed, i.e. F0(τ) = τ for every τ ∈ [0, 1]. Note that by assumption, limn→∞
rn
τjn

= c < ∞, potentially zero,

for j = 1, 2. Then along a sequence hn → h of functions hn : [0, 1] → R converging to h(τ) with respect to the

sup-norm, where supτ∈[0,1] |h(τ)| := ‖h‖∞ <∞ and τ + rnhn(τ) is a proper c.d.f. for n large enough, we have by

a mean-value expansion in h(τ)

Rn(hn) := sup
τ∈[0,1]

∣∣∣∣r
−1
n

(
|ψ̃′
k(τ)|

)−1 (
ψ̃k(τ + rnhn(τ)) − ψ̃k(τ)

)
− (|ψ′(τ)|)−1

ψ′(τ)hn(τ)

∣∣∣∣

= sup
τ∈[0,1]

∣∣∣∣rn
(
|ψ̃′
k(τ)|

)−2

ψ̃′′
k (τ + rnh̄n(τ))h(τ)

2

∣∣∣∣

= sup
τ∈[rnhn(0),1+rnhn(1)]

∣∣∣∣rn
(
|ψ̃′
k(τ − rnh̄n(τ))|

)−2

ψ̃′′
k (τ)h(τ − rnh̄n(τ))

2

∣∣∣∣

for n large enough, where h̄n(τ) takes a value between zero and hn(τ) for every value of τ .

Noting that for τ < τ1nk, ψ̃
′′
k (τ) = 0, and given our previous discussion of the tail behavior of the derivatives

of ψ̃k(τ), we can now bound

Rn(hn) ≤ sup
τ∈[τ1n, 12 ]

∣∣∣∣∣
(τ + rnh̄n(τ))

2− 2
k

τ2−
1
k

rnh(τ − rnh̄n(τ))
2

∣∣∣∣∣+ sup
τ∈[ 12 ,τ2n]

∣∣∣∣∣
(τ + rnh̄n(τ))

2− 2
K−k+1

τ2−
1

K−k+1

rnh(τ − rnh̄n(τ))
2

∣∣∣∣∣

≤ sup
τ∈[τ1n, 12 ]

∣∣∣∣∣
(τ + rn|hn(τ)|)2−

2
k

τ2−
1
k

rnh(τ − rnh̄n(τ))
2

∣∣∣∣∣+ sup
τ∈[ 12 ,τ2n]

∣∣∣∣∣
(τ − rn|hn(τ)|)2−

2
K−k+1

τ2−
1

K−k+1

rnh(τ − rnh̄n(τ))
2

∣∣∣∣∣

≤ 2

(
r
2− 2

k
n τ

1
k
−2

1nk + r
2− 2

K−k+1
n τ

1
K−k+1−2

2nk

)
rn sup

τ∈[0,1]

|hn(τ)|4
K−1
K

for n large enough since by assumption supτ∈[0,1] |hn(τ)| ≤ 2 supτ∈[0,1] |h(τ)| + 1 < ∞, say. Here, rn = n− 1
2 , so

that by our assumptions on τ1nk and τ2nk, this expression goes to zero for any limiting function h(τ) that satisfies
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supτ∈[0,1] |h(τ)| < ∞. The same argument applies to linear combinations of estimators for different values of k,

so that the regularization scheme in Theorem 4.1 satisfies Condition 4.1. Hence it follows from Lemma 4.1 that

the proposed normalized estimator satisfies the uniform approximation posited in Theorem 4.1 �

Appendix E. Rates for Functionals of the Distribution of Valuations

E.1. Proof of Proposition 5.1. Using integration by parts, we can rewrite the functional T (F ) at F as

T (F ) =

∫ ∞

0

w(v)F (dv) = [w(v)F (v)]∞0 −
∫ ∞

0

w′(v)F (v)dv

Since by Assumption 5.1, limτ→0 ω(τ ;F ) is bounded uniformly in F , and furthermore limτ→1 ω(τ ;F ) = 0 for all

F , the first term is equal to zero.

From the definition of ψ(·) and the lower bound on the density f0(v) from Assumption 2.3, there exist η1, η2 ∈
(
0, 12
)
and κ > 0 such that

∫ F−1
0 (τ̃)

inf V ψjn(v)f0(v)dv > κτ̃1+p for all τ̃ ∈ [η1τ1n, η2τ1n]. Also by construction of the

perturbation F1n(v) ≥ F0(v) for all v, so that by Assumption 5.1, the integrand does not change sign on the

interval [0, τ1n] for n large enough. Hence,

|T (F1n)− T (F0)| =

∣∣∣∣∣

∫ F−1
0 (τ1n)

inf V

w′(v)(F1n(v) − F0(v))dv

∣∣∣∣∣ =
∣∣∣∣
∫ τ1n

0

ω′(s;F0)(F1n(F
−1
0 (s))− s)ds

∣∣∣∣

≥
∣∣∣∣
∫ η2τ1n

η1τ1n

ω′(s;F0)κs
1+pds

∣∣∣∣ & τ
2+p+β1

1n

for n sufficiently large. Similarly, |T (F2n)− T (F0)| & τ2+p+β2

2n , and |T (F3n)− T (F0)| & αn, so that by Lemma

B.1, , conditions (3.1) and (3.2) hold with rn = n
−max

{

1
2 ,

2+p+β1
k1+p

,
2+p+β2

K−kr+1+p

}

�

E.2. Proof of Proposition 5.2. Note that since by assumption V > 0 with probability 1,

EF [Vk:K̃ ] =

∫ ∞

0

[
1−GK̃k (v;F )

]
dv

By the same argument as in the proof of Proposition 5.1, we can find η1, η2 ∈
(
0, 12
)
and κ > 0 such that

∫ F−1
0 (τ̃)

inf V ψjn(v)f0(v)dv > κτ̃1+p for all τ̃ ∈ [η1τ1n, η2τ1n]. Since F1n(v) − F0(v) = 0 for all v ≥ F−1
0 (τ1n), we can
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write

EF0 [Vk:K̃ ]− EF1n [Vk:K̃ ] =

∫ F−1
0 (τn)

0

[
GK̃k (v;Fn)−GK̃k (v;F0)

]
dv

=
K̃!

k!(K̃ − k)!

∫ F−1
0 (τn)

0

[
F1n(v)

k(1− F1n(v))
K̃−k − F0(v)

k(1− F0(v))
K̃−k

]
dv

=
K̃!

k!(K̃ − k)!

∫ τ1n

0

[(
F1n

(
F−1
0 (s)

))k (
1− F1n

(
F−1
0 (s)

)
)
)K̃−k − sk(1− s)K̃−k

]
h(s;F0)

−1ds

≥ K̃!

k!(K̃ − k)!

∫ η2τ1n

η1τ1n

[(
s+ κs1+p

)
k
(
1− s− κs1+p

)K̃−k − sk(1− s)K̃−k

]
h(s;F0)

−1ds

&

∫ η2τ1n

η1τ1n

sk(1+p)h(s;F0)
−1ds & τ

k(1+p)+1−α1

1n

for n sufficiently large since the integrand is always nonnegative. Similarly,

|EF2n [Vk:K̃ ]− EF0 [Vk:K̃ ]| & τ (K̃−k)(1+p)+1−α2

2n

and

|EF3n [Vk:K̃ ]− EF0 [Vk:K̃ ]| & αn
so that the conclusion follows from Lemma B.1 �

E.3. Proof of Proposition 6.1. We will in a first step apply a modification of Lemma B.1 to the distribution

G0(v) of a random bid BK̂ , where the index K̂ is drawn at random from a uniform distribution over {1, 2, . . . ,K},
the set of all bidders.

Let ηn := ηn− 1
2p+1 and τ0, ψ(·) as defined in Appendix B. In an analogous fashion as before, we define the

perturbations of the distribution of a random bid gjn(v) := g0(v) [1 + ψjn(v)] for j = 1, 2, 3, where

ψ1n(v) : = τp1n

(
β1nψ

(
G−1

0

[
τ−1
1n

(τ1n
2

−G0(v)
)])

− ψ
(
G−1

0

[
τ−1
1n

(
G0(v)−

τ1n
2

)]))

ψ2n(v) : = τp2n

(
β2nψ

(
G−1

0

[
τ−1
2n

(
G0(v)− 1 +

τ2n
2

)])
− ψ

(
G−1

0

[
τ−1
2n

(
1− τ2n

2
−G0(v)

)]))

ψ3n(v) : = ηpn

{
ψ
(
G−1

0

[
η−1
n (τ0 −G0(v))

])
− β3nψ

(
G−1

0

[
η−1
n (τ0 −G0(v))

])}

where for all j the sequence βjn is bounded between 1
B and B and chosen in a way such that gjn(v) is a density.

Also let Gjn(v) be the corresponding cumulative distribution functions.

Following the same arguments as in the proof of Lemma B.1, the expectation of the absolute value of the log

likelihood ratio for the sequence of deviations G3n is of the order nη2p+1
n , and therefore bounded as n → ∞ so

that the error probability of any classification procedure to distinguish between G0 and G3n is bounded away

from zero. For the deviations G1n and G2n the argument is identical to the original version of the Lemma. Hence,

if %(G0, G3n) ≥ ηγ3n , the conclusion of Lemma B.1 can be modified to

lim sup
n

P

(
%(Ĝn, G0) > cn

−max
{

γ3
2p+1 ,

γ1
k1+p

,
γ2

K−kr+p

}
)
> 0
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and

lim
c→0

lim sup
n

P

(
%(Ĝn, G0) > cn

−max
{

γ3
2p+1 ,

γ1
k1+p

,
γ2

K−kr+p

}
)

= 1

Therefore it suffices to show that %(G1, G2) := supv∈V |F (v;G1)− F (v;G2)| satisfies the conditions of this modi-

fication of Lemma B.1 with γ1 = p+ 1, γ2 = p and γ3 = p:

Fix b ∈ V , and let τ := G0(b). Since the bidding functions are strictly monotone in valuations, F (b−1(b;F )) = τ ,

i.e. the ordering of quantiles is preserved. For perturbation Fjn, note that using (6.2) and a mean value expansion,

we can write the valuation implied by bid b = G−1
0 (τ) as

b−1(b;F1n) = b+
1

K − 1

G1n(b)

g1n(b)
= b+

1

K − 1

G0(b) +
∫ b
inf V

ψjn(s)g0(s)ds

g0(b) [1 + ψjn(b)]

= b+
1

K − 1

G0(b)

g0(b)
+

1

K − 1

{∫ b
inf V ψjn(s)g0(s)ds

g0(b)
− G0(b)

ḡn(b)2
ψjn(b)

}
(E.1)

where ḡn(b) is an intermediate value between g0(b) and gjn(b). Also, from the bounds on the density function

f(v) in Assumption 2.3, the bidding function b(v;F ) and its inverse are Lipschitz continuous for F0 and Fjn.

Using the expansion (E.1),

Fjn
(
b−1 (b;Fjn)

)
− F0

(
b−1 (b;F0)

)
= Fjn

(
b−1 (b;Fjn)

)
− F0

(
b−1 (b;Fjn)

)

+F0

(
b−1 (b;F0) +

[
b−1 (b;Fjn)− b−1 (b;F0)

])
− F0

(
b−1 (b;F0)

)
(E.2)

=

∫ b−1(b;Fjn)

0

ψjn(s)g0(s)ds+
f0 (v̄n)

K − 1

(∫ b
inf V ψjn(s)g0(s)ds

g0(b)
− G0(b)

ḡn(b)2
ψjn(b)

)

Now consider the perturbation F1n and note that for any value τ ≥ τ1n
2 , all three terms in the approximation

error in (E.2) are nonnegative, so that

sup
b∈V

∣∣F1n

(
b−1 (b;F1n)

)
− F0

(
b−1 (b;F0)

)∣∣ ≥ sup
τ∈[ τ1n2 ,τ1n]

{∣∣∣∣∣

∫ b−1(G−1
0 (τ);F1n)

0

ψ1n(s)g0(s)ds

∣∣∣∣∣

+
infv∈V f0(v)f0

K − 1



∣∣∣∣∣∣

∫ G−1
0 (τ)

inf V
ψ1n(s)g0(s)ds

g0(b)

∣∣∣∣∣∣
+

∣∣∣∣∣
τψ1n

(
G−1

0 (τ)
)

supv∈V g0 (v)
2

∣∣∣∣∣







& τ1+p1n + τ1+p1n + τ1+p1n

so that γ1 = p + 1. For the local alternatives F2n the argument is analogous, except that the third term of the

approximation

∣∣∣∣
τψ2n(G−1

0 (τ))
supv∈V g0(v)

2

∣∣∣∣ is of the order of τp2n for τ ∈
[
1− τ2n, 1− τ2n

2

]
which gives us γ2 = p.

Similarly, we have for the perturbation F3n

sup
v∈V

|F3n (v)− F0 (v)| ≥ sup
τ∈[τ0,τ0+η−1

n ]

{∣∣∣∣∣

∫ b−1(G−1
0 (τ);F3n)

0

ψ3n(s)g0(s)ds

∣∣∣∣∣

+
infv∈V f0(v)

K − 1



∣∣∣∣∣∣

∫ G−1
0 (τ)

inf V ψ3n(s)g0(s)ds

g0(b)

∣∣∣∣∣∣
+

∣∣∣∣∣
G0

(
G−1

0 (τ)
)
ψ3n

(
G−1

0 (τ)
)

supv∈V g0 (v)
2

∣∣∣∣∣







& η1+pn + η1+pn + ηpn
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so that γ3 = p, which establishes the claim �
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