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Abstract

This paper looks at the role of identity in the fragmentation of networks by incorporating
the choice of commitment to identity characteristics, into a noncooperative network formation
game. The Nash network will feature divisions based on identity, moreover, it will have layers
of such divisions. Using the refinement of strictness, I get stars of highly committed players
linked together by less committed players. Next, I propose an empirical methodology to deduce
which dimensions of identity cause the fragmentation of a given network. I propose a practical
algorithm for the estimation and apply this to data from villages in Ghana.1

Keywords: Identity, Network formation, Community Structure

JEL Codes: D85, C45, Z13

∗I am thankful to Alberto Bisin, Prabal De, Kaushal Kishore, Nicola Persico, Debraj Ray, Guido Ruta, Julia
Schwenkenberg and Joerg Stoye for helpful comments and suggestions. I would also like to thank seminar participants
at NYU, ITAM and Banco de Mexico.

1I would like to thank Chris Udry and Markus Goldstein for providing free access to data collected by them from
four villages in Eastern Region of Ghana.

1



1 Introduction

This paper addresses the question of how identity leads to the fragmentation of networks; as well

as which dimensions of identity are important in such fragmentation. Identity in this paper is

defined as the set of characteristics/attributes attached to each person.2 It is a well documented

fact that different aspects of identity have been important in dividing society at different points of

time. For instance, in India, religion is an important line of division, race is an important line of

division in the US, religious identity supersedes national identity in many populations, etc. These

divisions have important economic, social, and, political consequences; and it is important to know

how these divisions come up as well as to know exactly which division currently prevails. To that

effect, this paper suggests a theoretical mechanism via which divisions along identity dimensions

arise endogenously in networks. The next logical question is, which dimensions could be leading

to fragmentation in actual networks. As an answer, I give an empirical strategy to estimate which

dimensions of identity are important in fragmenting a network as well as which groups along these

dimensions does each person ascribe to.

This paper makes a theoretical contribution to the literature on network formation by incor-

porating identity into a network formation model, and in allowing players to choose which aspects

of their identity will be important in the network thus formed. In this theoretical model, play-

ers have identity along multiple dimensions but they can choose how much they wish to commit

to different aspects of their identities. More concretely, I define identity as being defined along

different dimensions, where each dimension is composed of a fixed set of discrete characteristics.

Each individual’s identity vector consists of one characteristic from each one of these dimensions.

Commitment to a characteristic is a measured by the variable, θ ∈ [0, 1], where a higher θ indicates

higher commitment to the characteristic. For instance, a person with a West Indian and black

identity, might choose to identify more with the West Indian identity while not caring much for his

black identity and that would be an instance where he chooses a high commitment (θ for region

close to one) for region of origin and a low commitment for race (θ for race close to zero).3

To see exactly how identity and commitment have an impact on fragmentation, I think of the

links and groups in society as an outcome of a network formation game. Making a connection is

costly and requires some investment in terms of time and effort, but the greater is the network

of your connections (people connected to you directly or indirectly), the greater are the benefits.

2For a detailed discussion on the uses of the word ‘identity’ look at Brubaker and Cooper (2000)
3 example taken from Waters (1999).
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For instance, the costs of making a professional contact would be the time spent socializing with

them, sending them holiday greetings to stay in touch. The benefits from knowing a person could

be informational, social, or psychological; and these benefits are increasing in the number of people

you know directly or through other people. The benefit of being connected to more people can be

seen, for instance, in job search models; where, the greater is your network the more likely it is

that you hear of job openings. The introduction of identity makes an individuals decision two-fold:

- how much to commit to his characteristics,

- which links to form.

Identity enters the network formation game by changing the cost of making connections. The

profit from a link would now depend on the identities and commitments of the two people, where

the closer the identity and higher the commitments, the more profitable is the link formation and

vice versa. I first consider the simpler case where there is only one dimension of identity. In this

case the Nash network will be either empty with no links being formed and commitment choices

indeterminate; or, sort players by their identity and all players choose high commitment levels; or

finally, all players are connected and have lower commitment levels. To get a better sense of what

the exact structure of these networks might be, I use the commonly used refinement of strictness,

where I restrict attention to those Nash equilibria where each player strictly prefers his link strategy

to any other link strategy. Using this refinement, the structure of the connected network consists

of each identity type having a core star (the players who are a part of the star involve one central

player having direct links to all other players) of highly committed individuals, and these stars are

linked together by less committed players. As players are allowed to have identities along many

dimensions, the Nash network has the interesting feature that it incorporates layers of divisions. It

first divides the population based on some set of dimensions. Within the elements of the partition

generated, there might be further subdivisions based on added identity dimensions and this chain

of subdivisions might continue. This is very similar to real world situations where for instance, we

might observe division along religion and within each religion there is further subdivision based on

sects. Using the refinement of strictness, the important structure that emerges again has stars of

highly committed players being linked together by the less committed players.

I will now outline the empirical methodology proposed in this paper. The theoretical model

explains the existence of multiple equilibria that we observe in the real world. But to identify which

of the possible equilibria a given group of players is coordinating at, we need empirical methods.

The theoretical model uses some stark assumptions like no decay, each link has the same value and

it does not allow for any error in the formation of links. Under these assumptions, the model led
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to partitioning of the network into completely segregated components. In a more realistic setting

without these assumptions, we will see not clear divisions, but several communities within the

network. A community can be thought of as group of highly interconnected individuals with few

links across communities. In other words, the stark theoretical result of no links across communities

is replaced by the empirical fact that intensity of links within a community are higher than across

communities. From the insight gained by the theoretical model in this paper, we know that the

partition into communities and probabilities of interactions depend on identity. With that in mind,

I allow the probabilities of interactions to depend on identities and at the same time restrict possible

community structures to those based on identity. For each fixed partition and probabilities, I find

the likelihood of observing the data. I then select the partition and probabilities, which maximize

the likelihood of the observed data.

The estimation procedure has good large sample properties. It is consistent and so as the

sample size grows, the estimated partition and probabilities converge to the true data generating

process. If we search over some initial set of dimensions and add another dimension, which belongs

to true set of dimensions, the likelihood will strictly increase. These results suggest a simple search

algorithm, where starting with one dimension of identity at a time, we select the dimension that

gives the maximum likelihood. Then with this as one of the dimensions, we add other dimensions

and then pick the pair of dimensions that maximize the likelihood. We keep adding dimensions

until the likelihood stops increasing. Moreover, when searching over some k given dimensions, we

first begin with the finest partition and find the likelihood under that. Then we progressively make

it coarser till the likelihood stops increasing.

The data I use was collected by Chris Udry and Markus Goldstein 4 over the course of two

years and fifteen modules in four village clusters in Eastern Region of Ghana. In each village 60

couples/triples were questioned. Each respondent was questioned about his links to seven randomly

selected (without replacement) matches from the entire sample and three focal village residents.

In general, I found that religion and clan were important determinants of the communities. More

importantly, we do see evidence of multiple equilibria in this data with the four villages dividing

along different dimensions of identity.

Related Literature

The study of social identity has been long incorporated into the social sciences through the

pioneering works of Mead (1934), Stryker (1968), Tajfel and Turner (1979) and Stryker and Burke

4See Goldstein and Udry (1999) for a detailed discussion of the data. Also see Conley and Udry (2004), and,
Conley and Udry (2005).
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(2000). In economics, there is a large body of work trying to evaluate the impact of membership to

identity based groups on economic outcomes. An important theoretical contribution incorporating

identity, is the Akerlof and Kranton (2000) model, which allows the self image (derived from

identity) to affect the utility function, where they take as given which dimension of identity is

salient. Fryer and Jackson (2002) incorporate identity into a person’s decision making problem

differently, by looking at how people form expectations/judgments of other people based on the

other person’s identity. Sergio Currarini and Pin (2008) explores the formation of friendships

with people of different types and benefits of friendship being type dependent. Sen (2006) is an

excellent exposition on the relationships between identity and violence. The work of Bisin and

Verdier (2000), looks at the evolutions of a child’s identity choice. They look at the impact of the

parent’s socialization choice on the identity of the child and thus, the child’s identity is determined

endogenously. Esteban and Ray (1994) look at the polarization of society by attribute and they use

the concept of ‘identification’, which is how much a person relates to similar people. The paper by

Dev (2009) is very related to the present paper as it links choice of identity with network formation

model. However, the focus of that paper is towards the emergence of identity groups, whereas

this paper focuses on a theoretical and empirical investigation of partitions given existing identity

characteristics. Among work not directly incorporating identity into a decision makers problem,

social interaction models (beginning with Schelling (1971)) evaluate the impact of membership to

groups on socio-economic outcomes. Since this paper focuses on how networks partition with the

introduction of identity, it is also linked to the vast literature on club formation. Though most of

this literature is not concerned with the how the networks evolve within a club, the paper by ?

bridges that gap.

The literature in economics on network formation follows two main strands - one follows Jackson

and Wolinsky (1996) and the other follows Bala and Goyal (2000a) and Bala and Goyal (2000b).

56 This paper falls into the second strand. Bala and Goyal (2000a) propose that the network

formation game is a result of a non-cooperative one-shot simultaneous move game between players.

They further assume homogenous players and that the cost of a link is bourne by the initiator.

Galeotti, Goyal, and Kamphorst (2005), Hojman and Szeidl (2008), Sarangi, Billand, and Bravard

(2006), Galeotti (2006) and Gilles and Johnson (2000) relax the homogeneity assumption, but

5 The book by Jackson (2006) as well as Dutta and Jackson (2003) provide an excellent review of the literature.
6The recent paper by Page Jr. and Wooders (2009) unifies the two strands by suggesting a common framework

with which to view all network games.
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unlike this paper they fix the level of heterogeneity. 7 8

The work to extract the salient identity characteristics is linked in spirit (though not methodol-

ogy) to the vast literature on constructing algorithms for partitioning network. (see Newman (2004)

for an overview). It is also linked to work on finding clusters in sociology, statistics, computer sci-

ence and physics. Seminal work on block models and positional models by Lorrain and White

(1971) and White, Boorman, and Breiger (1976) established the concept of structural equivalence

which says that two nodes are structurally equivalent if they have the same relationships with all

other nodes. Nodes belonging to the same class/block would be structurally equivalent. More

recent and closely related work is by Nowicki and Snijders (2001), who, assume that unobserved

latent classes affect the probabilities of link formation. They do not account for homophily or that

people with similar characteristics are more likely to form links with each other. Tallberg (2005)

extended this model to represent homophily on attributes by allowing latent class membership to

depend on attributes. But this does not allow for any possible heterogeneity within latent classes

due to individual characteristics. In particular, this paper is most closely related to Copic, Jackson,

and Kirman (2009), who propose a maximum likelihood approach to rank community structures.

They assume that network generating process is some underlying community structure which par-

titions the nodes, probability of forming links within a community and a probability of forming

links across communities. Assuming the probability of forming the link is strictly greater if the two

nodes belong to the same community, they find the community structure and probabilities which

maximize the likelihood of observing the network.

The rest of the paper is organised as follows. Section 2 explains the theoretical model. Subsec-

tion 2.1 look at the case where identity characteristics are along a single dimension. Subsection 2.2

look at the case where identity characteristics are along a multiple dimensions. In both these cases,

we characterize the Nash and Strict Nash networks. Section 3 presents the empirical counterpart

of including identity in a network. Subsection 3.1 presents the methodology being used in detail.

7Other important theoretical extensions of network formation models include Jackson and Dutta (2000), Watts
(2001), Deroan (2003), Feri (2004), Kranton and Minehart (2001), Goyal and Joshi (2003), Goyal and Vega-Redondo
(2005), Slikker and van den Nouweland (2001), Gilles and Johnson (2000), McBride (2006), Bramoulle and Kranton
(2007), etc.

8Empirical investigation into the formation of networks includes work by Conley and Udry (2004), ? and Santos
and Barrett (2004). Empirical work using network ties to explain risk sharing starting with Townsend (1994) includes
De Weerdt and Dercon (2006), De Weerdt (2004), Fafchamps and Gubert (2007), Fafchamps and Lund (2003) and
Grimard (1997). Empirical studies using networks to explain technology adoption include Foster and Rosenzweig
(1995), ?, Conley and Udry (2005) and Bandiera and Rasul (2002). Granovetter (2005) provides an excellent overview
of the relationship between social structures and outcomes. works using networks to predict various economic out-
comes include Fafchamps (2002), ?, Fafchamps, van der Leij, and Goyal (2006), Patacchini and Zenou (2008) and
Munshi and Rosenzweig (2006).
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Subsection 3.2 presents the data and the results. Section 4 presents the conclusion. All proofs,

graphs, and, results are collected in the Appendices.

2 Identity and Network Formation

The players are denoted by the set N = {1, 2, ..., n}. Identity is defined along m dimensions where

the d− th dimension is denoted by Dd. A dimension D has κd characteristics D = {c1, ..., cκd} and

each person has exactly one of these characteristics. The set DIM = {D1, ..., Dm} collects all the

identity dimensions. Each person j′s identity is an m-dimensional vector Ij = {ij1, ..., ijm}, where

ijd ∈ Dd for each d. The identity profile of the population is contained in the n×m matrix ID.

I define a ‘block’ as a group made up of completely homogenous players who have all the same

characteristics, given DIM. More formally,

Definition 1 Given identity dimension DIM = {D1, ..., Dm}, a block B ⊆ N is a collection of

individuals such that if l, k ∈ N, then Ild = Ikd for all d ∈ {1, ..,m}. Block(DIM) is the set of all

blocks given DIM.

More generally, given any set of dimensions, DIM′ ⊆ DIM, let Block(DIM′) denote the set of all

blocks given DIM′. For DIM′ = φ, let Block(φ) = {N}.
Consider an example with three dimensions of identity, DIM = {D1, D2, D3}= {Colour, Height,

Gender}. Further, within the dimension of Colour we have two characteristics of {Red, Blue},
within the dimension of Height we have two characteristics of {Tall, Short}, and finally, within the

dimension of Gender we have two characteristics of {Male, Female}. So we now have,

DIM = {D1, D2, D3}

= {Colour, Height, Gender}

= {{Red, Blue}, {Tall, Short}, {Male, Female}}

A person j′s identity vector, Ij , will consist of one characteristic each of Colour, Height and

Gender. For instance, Ij = {ij1, ij2, ij3} = {Red, Tall, Male}. A block in this scenario will con-

sist of players who have the same Colour, same Height and same Gender. Block(DIM) will

be the set of all possible blocks, in this case twelve. Figure 7, illustrates all possible blocks

under these three dimensions. Suppose DIM′= {D2, D3} = {Height, Gender}. The we get
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Block(DIM′) = {{Tall,Male},{Tall,Female},{Short,Male},{Short,Female}}, where {Tall, Male}
for instance includes all players of all two colours who are Tall and Male.

I next define the ‘similarity index’ for two individuals, which is an m-dimensional vector taking

the value of 1 in those dimensions in which the two individuals have the same characteristic.

Definition 2 The similarity index is denoted by Slk ∈ {0, 1}m, where the dth element Sdlk = 1 if

ild = ikd and zero otherwise. Let Sl = {Sl1, .., Sln} collect all the similarity indices for the payer l.

For example if Il = {Red, Tall, Male} and Ik = {Blue, Tall, Male}, then l and k differ only in

the dimension of Colour and they have the same characteristic under Height and Gender. So for l

and k we get Slk = {0, 1, 1}.
Each person in the game has two choices:

Commitment: Each person j chooses his commitment along each dimension-d, which is de-

noted by θjd ∈ [0, 1]. A higher commitment to any characteristic will make linking with people with

the same characteristic more profitable but make links less profitable with people who don’t share

this characteristic. The commitment choice for an individual j is given by θj = {θj1, θj2, .., θjm}.
Let the n×m matrix Θ denote the commitment profile of the population. Given the identity profile

of the population as well as the commitment choices, I define Bθ = {k ∈ B|θk = θ} as the subset

of a block B ∈ Block(DIM), all members of which choose commitment of θ. We use this definition

to club together all individuals who are homogenous in not only their characteristics but also their

commitments. In particular, B1 = {k ∈ B|θk = 1} and B0 = {k ∈ B|θk = 0}.
Links: Each person also chooses his links, gj ∈ {0, 1}n−1 where each element gjk ∈ {0, 1} of

gj = {gj1, .., gj(j−1), gj(j+1), .., gjn} denotes his decision to form a link (gjk = 1) or not (gjk = 0)

with agent k. The links are undirected and gkl = 1 will allow k to access l’s information and vice

versa, even though the cost of the connection is borne by k.

These two choices together define the strategy of an individual i as si = {θi, gi} ∈ [0, 1]m ×
{0, 1}n−1. The two decisions are taken simultaneously to capture the fact that the choice of com-

mitment determines which connections to make and at the same time what connections we make

determine how strongly we want to be committed to any characteristic.

The strategy for links generates a network denoted by g, where g = {g1, ..., gn}. Define g = cl(g)

where an element of g is gkl = max{gkl, glk} for all l, k ∈ N. We say a path exists between agents

k and l if either gkl = 1 or there exist j1, ..., jm such that gkj1 = ... = gljm = 1. A path is denoted

by k
g←→ l. A component within a graph g is C(g) ⊆ N such that all agents within the component

have a path connecting each other and there are no link going from any player in C(g) to any player
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not in C(g). A component is said to be minimal if deleting any link will lead to it not being a

component anymore and a network is called minimal if all its components are minimal. A network

is said to be connected if it has only one component made up of all players. A network is said to

be empty if no player makes any links.

Neighbourhood for agent k are the agents with whom k forms links and is defined by function

Nd(k; g) = {l ∈ N |gkl = 1}. The set of all agents to whom k is linked, directly or indirectly, is given

by N(k; g) = {l ∈ N |k g←→ l}. The payoff function for k−th individual is given by Πk : Θ×G→ R,

Πk(Θ, g) = π(N(k; g), Nd(k; g), Sk,Θ)

We use the following assumptions:

• A1: π() is strictly increasing in the size of N(k; g).

• A2: π() is strictly decreasing in the size of Nd(k; g). Further, for each l ∈ Nd(k; g), the

marginal impact is smaller for larger commitments by k/l for identity dimensions they have the

same characteristic in; and, it is larger for larger commitments by k/l for identity dimensions

they don’t have the same characteristic in.

• A3: Adding a link which accesses players k is not connected to, where this link is profitable

if it were the only link made by k, will increase k’s profits. Moreover, only such profitable

links increase profitability.

The first two assumptions imply that payoffs are increasing in the number of people one is linked

to but is decreasing in the number of links formed. The second assumptions also implies that the

cost of forming a link depends both on the identity of the players as well as their commitments.

For two players k and l the more their identities agree, the higher is the profit. Moreover, if agent

k and l along dimension-d have the same characteristic or (Ikd = Ild), then π() is increasing the

more committed they are or higher is θkd and θld; but if Ikd 6= Ild then π() is decreasing in θkd and

θld. The last assumption implies that given a player’s θ, if any link strategy is profitable on its own,

it must be profitable added to the current link strategy of the player. Moreover, each individual

link in a player’s strategy must be profitable.

Nash, Strict’ Nash and Efficient Structures: A strategy profile s is said to be Nash

equilibrium if

Πk(Θ, g) ≥ Πk((θ
′
k,Θ−k), (g

′
k, g−k))

for all k ∈ N , where Θ−k is the commitment profile of all but the k − th player, g−k is the link

strategy of all but the k − th player and s′k = {θ′k, g′k} is any other strategy of player k.
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A refinement often used in the literature is that of Strict Nash, where each player strictly

prefers his link strategy. In this paper where we look for Strict’ Nash networks, (g,Θ) formed by

strategy profile s that satisfies strictness on the link strategy but not necessarily on the commitment

strategy:

Πk(Θ, g) > Πk(Θ, (g′k, g−k))for all g′k 6= gk

In other words we are looking at strategies such that for each individual, the link strategy given

Θ, is strictly better than any other link strategy. But they could have an indifferent strategy which

involves a change in commitment only. I choose this form of strictness because any individual not

forming links is always going to be indifferent about his commitment - and there will be always be

at least one such individual in equilibrium.

An efficient outcome maximizes welfare over all possible commitment profiles and networks;

where welfare is measured by W : Θ×G→ R,

W (Θ, g) =
∑
k∈N

Πk(Θ, g)

2.1 One Dimensional Identity

I begin by assuming that people have just one dimension of identity. For instance only colour sorts

people into groups. Within this one dimension of identity there are κ characteristics, for example,

within color, people could be either Blue, Green or Red. With a single dimension of identity, a

block collects all individuals with the same characteristic. In the previous example, there would

be three blocks; a block of Blue people, a block of Green people and a block of Red people. In

particular, Bi denotes the block which collects all players with the i− th characteristic and we let

ni denote the number of people in Bi.Though the identity characteristic is given exogenously in the

model, each person chooses his commitment. The commitment choice of player k is given by the

variable θk ∈ [0, 1], where a θk = 1 denotes the strongest level of commitment to his characteristic

and θk = 0 denotes least commitment to his own type.

The following result shows that the equilibrium Nash structure will be empty, connected or will

have sorting by characteristic. Moreover, in a divided society, commitment levels will be very high,

whereas in a connected society commitment levels will be lower.

Proposition 1 Nash Networks: Under A1, A2 and A3, Nash Networks will be one of the fol-

lowing:

1) Empty, with no connection being formed and choice of commitment is indeterminate.
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2) Separated, where for each characteristic i; either, Bi will form a minimally connected

component and commitments are 1, or, everyone in Bi is a singleton.

3) Minimally Connected, with at least one player choosing commitment less than 1.

The propositions follows directly once we establish that all players with the same characteristic

must either belong to the same component or be singletons and, moreover, if any two different

blocks are linked, then it must be that everyone is linked. Suppose in a Nash network g; k, k′ ∈ Bi
and of them k belongs to some component C(g). If k belongs to C(g) then either k himself makes

a profitable link or some other player player profitably links to k. By choosing an commitment

θk′ = 1, k′ can form a link with k which is cheaper or as costly as the the link k makes/receives and

he gets linked to everyone in C(g). If k′ ∈ C ′(g), and if either k or k′ were not making any links, the

one not making the link would have the incentive to add a profitable link to the other. In case both

are making links, then the one making the less profitable links would prefer to switch to adding a

more profitable link to the other. In other words, all players in a block will either belong to the

same component or none of them makes any links. Next, if it is profitable for a player k ∈ Bi to

form a link with l ∈ Bj , then the same link is also profitable for any player from some third block

Ba. Suppose Ba formed a separate component. By minimality Ba must have at least one player

who makes no links within Ba and this player could choose θ = 0 and form a link with k. And so

a Nash network must either be connected or have no links between blocks.

The three types of Nash networks are depicted in Figures 1, 2 and 3. The three figures assume

that the only dimension of identity is colour and within this dimension there are three possible

characteristics: Blue, Green and Red. Figure 1 shows the empty network with no links at all.

Figure 2 shows sorting by colour, where there are no links between different blocks. It shows that

the Green block is internally connected and forms a component and so does the Red block; the Blue

block on the other hand forms no links and everyone with the characteristic Blue is a singleton.

Figure 3 shows a minimally connected network where everyone is connected to everyone else.

An important thing to note about the Nash Networks is that they allow for multiple equilibria.

Given the cost structure, both a minimally connected network and a network separated by identity

might be possible Nash Equilibria.

Corollary 1 If π({k}, {k}, Slk = 0, θk = 1, θl) = −∞ and π({k}, {k}, Slk = 0, θk = θl = 0) > 0,

then this society will either be minimally connected with lower average commitments or fragmented

with a high average commitment.
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We can think of this as the case where people choosing θ = 1 have militant identities and any

player with a different identity can not have links with him. As long as π({k}, {k}, Slk = 0, θk =

θl = 0) is low enough, we get multiple equilibria - one where at least some people from all identity

blocks choose lower commitment and the network is connected, or, another where everyone chooses

high commitment and the network is fragmented by identity.

The Nash networks will be numerous given any cost structure. One refinement often used in

this literature is strictness, which allows us to focus on the more stable Nash equilibria where each

player has only one best response strategy. In the network games without identity, the important

Strict Nash structures is the center-sponsored star or the empty network. A star network has one

central player and all players are linked directly only to him. If the the star is center-sponsored, then

the central player forms a link with each player and no other links are formed. Given heterogenous

players, another important structure is the interconnected star, which in this framework would

involve each characteristic block connected within itself as in a star and then the different stars

(blocks) form links to each other. Interestingly, in this model with identity, structures very similar

to interconnected stars will emerge as one of the important Strict’ Nash structures. In previous

work by Galeotti, Goyal and Kamphorst,(2003), a structure that emerged was the generalised

center-sponsored star. Within the framework of this paper, the generalised center-sponsored star

will consist of one central block making all the links. Within this central block there will be a

central player forming all the links within the block. Anyone from the central block who makes

outside links only will choose θ = 0 but those central types who form no links will be indifferent to

the choice of θ.

To simplify the discussion of the Strict’ Nash, I restrict attention to discrete commitment

choices, in particular where θ ∈ {0, 1}. This limited choice can be viewed as the decision of whether

or not to give any weight to the characteristic.

One structure that emerges is a generalised version of the interconnected star here called the

‘interconnected electron star’. In this structure, members of any characteristic block choosing θ = 1

will be part of a center-sponsored star and this star will sponsor links to members with the same

characteristic choosing θ = 0. The θ = 0 players are like the electron to the main star and they

make/receive links with the other blocks.

Definition 3 A structure is called interconnected electron stars if:

(1) for each characteristic i, Bi is internally connected with players choosing θ = 1 being the

part of a center-sponsored star. This star forms links to any other members choosing θ = 0.
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(2) all the blocks are interlinked with all these external link being sponsored by the same block

and only players choosing θ = 0 receiving links from other blocks.

Figure 5 illustrates an interconnected electron star. Each block has a core made up of the players

choosing θ = 1 and forming a center-sponsored star. These center-sponsored stars then form the

link to player from their own block who chooses θ = 0. The Red player choosing θ = 0 makes the

links to the Blue player and Green player choosing θ = 0. The generalised center-sponsored star is

illustrated in Figure 4, where the Red block forms a center-sponsored star consisting of Red players

choosing θ = 1. The center-sponsored star then sponsors links to other Red players choosing θ = 0,

who then sponsor links to all the Blue and Green players.

Given the blocks B1, ..., Bκ, for notational ease, let us assume that π(B1, {k ∈ B1}, Slk = 0, θk =

θl = 0) ≤ ... ≤ π(Bκ, {k ∈ Bκ}, Slk = 0, θk = θl = 0). In other words, if a player could form an

external link to any of the blocks, his profits would be higher by linking to Bm than to to Bm−1.

Proposition 2 The Strict’ Nash under the assumption A1-A2 and θ ∈ {0, 1} will be the following:

• Empty Network if,

π({i}, {i}, Sij = 1, θi = θj = 1) < 0;∀i, j such that Ii = Ij

• Unconnected Center-Sponsored Stars for each block in the set {Bx1, ..., Bxy}, if,

π({i}, {i}, Sij = 1, θi = θj = 1) ≥ 0;∀i, j ∈ {Bx1, ..., Bxy} such that Ii = Ij

π(Bκ, {k ∈ Bκ}, Slk = 0, θk = θl = 0) < 0;∀l, k, κ such that k ∈ Bκ, l /∈ Bκ

• Interconnected Electron Stars or Unconnected Center-Sponsored Stars if,

π({i}, {j}, Sij = 1, θi = θj = 1) ≥ 0;∀i, j such that Ii = Ij

π({k}, {k}, Slk = 0, θk = θl = 0) < 0;∀k, l such that Ik 6= Il

π(B2, {k ∈ B2}, Slk = 0, θk = θl = 0) ≥ 0;B2 such that k ∈ B2; l /∈ B2

• Generalised Center-Sponsored Star or Interconnected Electron Star or Unconnected

Center-Sponsored Stars

π({i}, {i}, Sij = 1, θi = θj = 1) ≥ 0;∀i, j such that Ii = Ij

π({k}, {k}, Slk = 0, θk = θl = 0) ≥ 0;∀k, l such that Ik 6= Il

The proposition says that the Strict’ Nash network will be empty for very high cost ranges,

unconnected center-sponsored stars if it is cheap to link within the same block but links are costly
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between different blocks, interconnected electron stars if links between different blocks are feasible

and finally generalised center-sponsored stars are possible under very low costs. In fact, the gener-

alised center-sponsored star can only emerge if all costs are very low, or in other words if identity

does not have a significant impact on the profits. The proof focuses on the case when identity

does have an impact on profits or when π({k}, {k}, Slk = 0, θk = θl = 0) > 1. The intuition for

the proof is in three facts explained below. The first is that all those choosing θ = 1 within a

block, if internally linked, will form a center-sponsored star. This is so because these players are

homogenous not only in their identity but also in their commitment. Consider three players, k, l

and m, from the same block and all of them choose θ = 1. If k forms a link with l, then in a Strict’

Nash network, they will receive no links since any player choosing to link to them will be indifferent

amongst linking to either. Also under strictness l can not form links with anyone else from the

same block choosing the same identity. But since k and l are linked, we must have that m belongs

to same component. And that is only possible if k forms a link with m, in other words, or, if they

are arranged as in a star. If this star exists for Bi, we call it Bi1 − star and this star will then

sponsor links to all other members of Bi choosing θ = 0.

The next two facts work under the assumption that links across blocks are not possible to

access a single player, or π({k}, {k}, Slk = 0, θk = θl = 0) < 0. The important thing to note with

π({k}, {k}, Slk = 0, θk = θl = 0) < 0 is that no external link will be made to a single player or

in other words, if an external link is made to a player, it must be because he is linked to others.

Linking to a player with a different characteristic and an commitment of 1, is the costliest link for

any player. If gkl = 1 for k and l belonging to different characteristic blocks, and θl = 1, then

because π({k}, {k}, Slk = 0, θk = θl = 0) < 0, l must have other links, say with l′, but for k linking

to l′ will either be cheaper or as costly as linking to l. This immediately leads to the conclusion

that in a Strict’ Nash network, any player receiving an external link must choose θ = 0. Which

also means that Bi1 does not receive any external links and so it must be internally connected.

Moreover, the only way for Bi to be externally linked is if Bi0 and Bi1 both receive external links

and we already know that Bi1 cant receive external links and so Bi1 will be internally linked to Bi0.

This now gives us for each block receiving links, the structure of a core star formed by the players

choosing θ = 1 and this star sponsoring links to the player choosing θ = 0.

We now move to the question of efficiency, where in general, efficient networks will not be easy

to pinpoint in this setting. Efficient networks will allow for blocks being partially connected, as

well as for some blocks being connected but others not. But given that direct and indirect links

are of equal value, all efficient networks will be minimal. Also given that internal links are cheaper
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than external links, any connected efficient network must have the minimum number of external

links. Note that the star network need not be the most efficient way to connect all players within

a block.

Let us look for how our Strict’ Nash networks compare to the efficient networks. For the rest

of this section, let us assume that the star network is in fact the efficient structure within each

block. We see that Strict’ Nash networks will approximate the efficient network whenever it is

an interconnected electron star. And even when the Strict’ Nash is unconnected center-sponsored

stars; for some range of profit functions, it is efficient. But if forming links with other blocks is

very cheap, then we know that Strict’ Nash networks might be generalised center-sponsored stars

which are not efficient.

In general an important reason why Strict’ Nash networks are inefficient for many profit func-

tions, is because in undirected networks, only one person bears the cost of the link while both

benefit from the link. In a star network, moreover, only one person bears the cost for all the links

while everyone benefits equally. We require that linking to a single player be profitable for the

Strict’ Nash network to be nonempty, whereas, the efficient network will be nonempty as long as

linking to everyone through one link is better than having no links and observing no one.

Even though the efficient and Nash networks are connected, some of the resulting interconnected

electron star structures might be inefficient because it allows for the possibility of players choosing

θ = 1 to form external links, it allows all internal links to be formed by a player choosing θ = 0

and moreover if a single block sponsors all the external links, it allows that block to have more

than one player choose θ = 0. There are a few additional assumptions which could get rid of the

first two causes of inefficiency. One is if we required players to make only one kind of link, either

external or internal. Another is assuming links between players with different characteristics are

prohibitively expensive if one player chooses θ = 1. We could think of players choosing θ = 1 as

those with militant identities who want to have links only within their characteristic and moreover

to repel any links initiated by any player with a different characteristic. Under both assumptions

we would see the interconnected electron star with all external links formed by players choosing

θ = 0 , each block would have a B1i− star and one block would sponsor all the external links. The

only remaining inefficiency would occur because the block sponsoring the external links might have

more than one player choosing θ = 0. In that block there might be some players choosing θ = 0

and making no links, this is purely because of the inherent inefficiency of undirected links, where,

if a player bears no costs, he is indifferent in his commitment choice. There might also be more

than one player choosing θ = 0 and making external links. But its important to keep in mind, that
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for each such inefficient interconnected electron star, there is one that is efficient.

Unconnected center-sponsored stars might emerge as the only Strict’ Nash networks where the

efficient network is minimally connected. The inefficiency is again due to the fact that only one

player bears the cost of the link. The cost of linking the two blocks is borne by one person, though

the benefits are shared by all the members of those two blocks. When the Strict’ Nash network

allows for the possibility of interconnected electron stars, the unconnected center-sponsored stars

might occur if in at least m− 1 blocks every player chooses to be strongly committed at θ = 1. To

convert this inefficient unconnected center-sponsored star to the efficient network would require 1

player in each block to switch to choosing θ = 0 and one of those players to add links to the other

θ = 0 players.

2.2 Multi-Dimensional Identity

We now allow players to have identities along more than one dimension. The possible number of

dimensions of identity is large and, in fact, if we allowed enough dimensions of identity, we could

map each person to a unique set of characteristics. Most of these characteristics would not play a

role in determining costs of connections, for instance the difference in the size/shape of the nose

would have no bearing on the cost of connections even though it would be characteristic in the

identity vector. We think of DIM as collecting only those dimensions of identity, which due to

some historical/sociological reasons, actually have a bearing on the costs of connection.

The next definition defines a concept very crucial to the structure of the Nash equilibrium.

Consider a set of dimensions DIM′ ⊆ DIM and the blocks generated by using only DIM′ collected

in the set Block(DIM′).

Definition 4 DIM′ are said to be Separating Dimensions in a network g; if, g is such that

there are no links across the different Bi ∈ Block(DIM
′
). If no such dimensions exist, and, the

network is neither connected nor empty, we say the separating dimensions are φ.

Definition 5 DIM1 are said to be Minimal Separating Dimensions, if they are separating

dimensions and there do not exist any DIM′ ⊂ DIM1 such that DIM′ are also separating dimen-

sions.

Suppose, continuing a previous example with DIM = {D1, D2, D3} = {Colour, Height, Gender}
= {{Red,Blue},{Tall, Short}, {Male, Female}}, that there is a network that has two components,

the first collecting all Male’s and the second collecting all Female’s. In this case clearly, the network
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is divided along the dimension Gender. Consider another variation where there are five components,

the network first divided along Gender and then further Males are divided by Colour and Females by

Height. In this case now each component is a strict subset of Block(DIM′) = {{Male}, {Female}}
and the minimal set of dimensions is still {Gender}.

Proposition 3 Under A1 - A3, a Nash network g, will feature layers of separation -

1) At the level of the entire population, the network is either connected, empty or there exists a

unique minimal set of separating dimensions DIM1 ⊆ DIM.

2) At the next level of separation, we consider the subpopulation within each Bi ∈ Block(DIM1),

for which there will be some unique minimal separating dimensions DIM1,Bi ⊆ DIM/DIM1.

3) This recursive process will continue till we reach a level where all subpopulations are either

connected, empty or the separating dimensions are φ.

To establish the result for the Nash network, we use a series of lemma’s presented in the

appendix. The first lemma shows the uniqueness of minimal separating dimensions. The next

lemma states that the Nash network must be minimal. The next proves that all members of a

block B, where B ∈ Block(DIM), will either have no links at all or they will all belong to the

same component. This is similar in spirit to the one-dimensional case. A component in a Nash

network will then consist of some of these blocks forming links with each other. While this is true,

there might be a minimal set of dimensions, DIM1, which is a subset of DIM, such that under g

there are no links across Bi ∈ Block(DIM1). Existence of such a set of dimensions is guaranteed,

because any network g will always define a partition over Block(DIM) or φ.

Figure 8 shows some possible Nash network components under the previous example. It uses

the same dimensions as the previous example, DIM = {D1, D2, D3} = {Colour, Height, Gender}
= {{Red, Blue}, {Tall, Short}, {Male, Female}}. In the first figure, the network forms three

components, {Red, Tall}, {Red, Short} and {Blue}. This network is first divided by Colour and

then further within Red, it divides by dimension Height. The next network in Figure 8 defines

a partition over the blocks generated by DIM = {D1, D2} = {Colour, Height}. The particular

partition combines the blocks of {Red, Tall}, {Blue, Tall} and {Blue, Short} into one component

and the other component consists of the block {Red, Short}. The last network in Figure 8, first

the network defines a partition over Block({Colour}) and then within Red, the network subdivides

based on Height and within Blue, the network subdivides based on Gender.

Notice that with multiple dimensions, the possibility of multiple equilibria is even larger.
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Corollary 2 Let us add the assumption that for any dimension d ∈ DIM, if Sdlk = 0 and either

θdl = 1 or θdk = 1 ⇒ π({k}, {k}Slk, θl, θk) = −∞. Let us also assume π({k}, {k}, Slk, Slk, Slk) ≥ 0.

Under these added assumptions, any partition based on any identity dimensions can be supported

as an equilibrium network.

As in the one dimensional case, we can think of anyone choosing an commitment of 1 along as

any dimension as a fanatic and links with players with a different identity along that dimension are

impossible. With costs low enough, we can get any partition as an equilibrium.

Next I look at the Strict’ Nash networks. Before doing that I use the restriction, as in the one

dimensional case, that the choice of θkd ∈ {0, 1} for all individuals and for all dimensions. The

restriction is the similar to what we used in the one dimensional case and it just means that each

individual has only two commitment choices for each dimension - whether to commit to it or not;

he doesn’t take the qualitative decision of how much to commit to it.

I will now impose some further assumptions, which serve to greatly simplify the analysis of the

Strict’ Nash networks.

A.M1 : Members in block Bi > κ1 × ...× κm for all i ∈ {1, .., κ1 × ...× κm}
A.M2 : π({k}, {k}, S, ., .) > 1 for all S 6= 1.

A.M1 says that each block has more members than the total number of blocks. If we are

considering only those dimensions of identity which do have a bearing on costs, then this assumption

sounds not unreasonable. A.M2 serves to rule out uninteresting cases in which identity does not

have an important bearing on costs or when all costs are very low. The assumption also effectively

rules out structures similar to the generalised star.

An important structure that emerges in the Strict’ Nash networks is the interconnected tail stars

which involves numerous clusters of highly committed players linked together by less committed

players. Each block Bi from Block(DIM) which belongs to an interconnected tail star, has a core

consisting of players who choose to commit to all their characteristics; these players form a center-

sponsored star. From these center-sponsored stars emanate tails made up of players not choosing

to commit to all their characteristics. Note that a tail for the Bi1−star might include players from

blocks other than Bi. Along the tails, the player closer to the center of the star forms the link.

Each of these tails is then used to establish links with other center-sponsored stars and their tails.

Definition 6 A structure is called interconnected tail stars if

(1) if Bi ∈ Block(DIM) belongs to it, then Bi1 is nonempty and forms a center-sponsored star.
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(2) if l ∈ Bi chooses θ 6= 1, then it belongs to a tail or there exists some {k1, .., kl} such that

gk1k2 = ... = gkll = 1 and θk1 = 1.

(3) each tail belonging to any Bi1 makes a connection leading to some Bj1.

Proposition 4 The Strict’ Nash equilibrium, under A1-A3 and the additional assumptions of θkd ∈
{0, 1}, A.M1, and, A.M2; if it exists, is either empty or is such that each non-empty component is

an interconnected tail star.

I will now give an intuition for the proof of each component being an interconnected tail star

given in the appendix. The first lemma says that all people within a block who choose to commit

to all their characteristics will be arranged in the form of a center-sponsored star, this is similar is

spirit to the proof in the one dimensional case. The next lemma establishes that each block from

Block(DIM) must have some internal links if connected, which together with the first lemma and

the assumptions implies that each block has a star made up fully committed players. Assuming

that all external links are costly means that external links can’t be made to one person alone,

and that is the driving reason behind the fact that there must be some blocks with internal links.

The assumption that each block has more members than the total number of blocks is useful in

simplifying the analysis by ensuring that each one of the blocks will have internal connections. The

third lemma effectively says that each Bi1 − star collects a tail (or more) with the first person in

the tail being some player from Bi but not Bi1. This is a generalisation of the electron star concept,

where instead of just one electron we now have a tail. These tailed stars will now form links with

each other using any member of a tail. For analogy, in the electron star, the electron was used to

link to other blocks. The intuition for the tail comes from the fact that now there are many different

commitments that each player can choose and someone not choosing θ = 1 need not necessarily be

a part of the tail of his own block, he has more freedom and could get attached to any tail for any

star in his component.

Figure 9 shows an interconnected tail star, where the tail star with the identity {Blue, Short,

Male} is shown in detail. This blocks has two tails, one leading upto the {Blue, Short, Female} -

star and another going to {Blue, Tall, Male} - star.

Efficient networks in the multidimensional identity case as in the one dimensional identity case

will have the minimum possible number of external links. Again, let us assume that the profit

function is such that a star network is efficient within a block. Moreover only the external links

selected will be those which are the cheapest. For instance to connect x blocks, there will be x− 1

external links. Each block can be linked to the rest of the blocks using x−1 possible ways/links. Of
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these x−1 possible links, the efficient network will select the cheapest possible link. Of course, in a

Strict’ Nash network, this externality is not always taken care of. Another source of inefficiency of

the Strict’ Nash networks is the existence of the longer tail because efficiency requires that no more

than one person be in a tail. Again in Strict’ Nash networks there is centrality in the sense that

all link within the component which are similar must be made by the same player or the star he

belongs to. For instance within a Bi1− star the central player makes all the links. If from a tail of

the Bi1− star a player, say l, makes a link with similarity index S, then any other link which again

has similarity index S (or more) with l , must be accessed by the same player or another tail of

Bi1− star. Coupling this centrality with the fact that the cost of any link is borne by the initiator

of the link, Strict’ Nash networks loose a lot of efficiency. Link between blocks are possible in Nash

networks when link costs are substantially below those needed in efficient networks. Though the

structure of the efficient networks will still be interconnected stars, which is a special case of the

interconnected tail star, so there will be cost ranges when Strict’ Nash networks are efficient.

3 Identity and Community Structures

We now have an explanation about why networks would be partitioned. We know that different

choices of commitment would lead to different partitions within the same set of players. What we do

not know, is how to deduce the actual partitions given the data on links and identity characteristics.

We hardly ever expect to find clear divisions as in the Nash networks. What we would like to find

is which dimension of identity seems to be important in dividing society. To exemplify, look the the

network in Figure 10, where players have identity along the dimension of Colour (white/black) and

Shape (square/triangle). Looking at this figure its not clear which (if any) dimension of identity

is more important in the partition. In the next two figures, we rearrange the network data once

by Colour and next by Shape, and here we see that visually it is clear that the Shape is more

important in generating the link data.

To see the role of commitments in the empirical strategy, keep in mind that commitments and

links are chosen simultaneously, and the choice of one affects the other; knowing either would give a

good idea of what the other would be. If we knew the commitment choices, we would have a natural

way of ordering the data. For instance, in the example above, the network would be possible given

that the commitment to Colour would be very low for all players, but the commitment for Shape

should be high for most players. On the other hand, given that we know the partition is more

likely Shape, we know that commitments for Shape would in general be higher than commitments
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for Colour. In other words, determining one should be sufficient to impute the other.

We now build the estimation strategy which is a generalisation of the ideas presented in the

in Figures 10, 11 and 12. What we try to do is build an estimation strategy based on attaching

likelihood numbers to the various possible partitions. And we pick the partition which maximises

this likelihood. In building the estimation strategy we will incorporate the qualitative results of

the theoretical model, but leave out quantitative predictions which arise from assumptions which

can not be expected to hold in the data. One such prediction is that in a separated network there

will be absolutely no links between two components and a network will be connected with just one

link between two groups. Under more realistic assumptions, e.g. there is some error term in the

payoffs, linking to some players gives higher values, etc, we would not expect complete separation.

Allowing for error in the payoffs or allowing for mixed strategies, we model the link strategy as

the probability of linking to another player based on identities. Another assumption that would

possibly not hold in the data is the no decay assumption, relaxing which would lead to more links

being formed than predicted by the Nash networks. Relaxing these assumptions, what we could

in fact observe in the data would be what are called “communities”. A community is a collection

of people, such that each member of the community is more likely to have links with someone

from the community than with someone outside of the community. A community structure is then

the collection of all such communities in a population. An important insight that we keep from

the theoretical model, is that communities will be built along identity dimensions and that the

probability of forming links will depend on the identity of the two persons.

3.1 Identifying Community Structure given Agents’ Identity

The data we expect to observe is a random sample of all possible interactions, as well as identities.

What we would like to find out is the community structure and the probabilities of interaction. The

method proposed here involves selecting the community structure and probabilities of interaction

which maximise the likelihood of observing the data. I will now outline the likelihood strategy in

detail.

Definition 7 For two players with similarity index S, pSin is the probability that they link within the

same community and pSout is the probability that they link while belonging to different communities.

Given our assumption that community structures are based on identities, we know that the

only possible community structures are the ones which have divisions along the dimensions.
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Definition 8 ΠDIM is the set of all community structures which involve divisions along dimensions

of identity included in DIM.

Note that the community structure is defined by the dimensions of identity only and it does

not depend on the number of individuals in the community. ΠDIM effectually defines a partition

over identity blocks.

Let pin be the set which collects all possible pSin and pout the corresponding set collecting all pSout.

Let PDIM denote the space of all feasible (pin, pout) given DIM. Let π ∈ ΠDIM denote a partition

from ΠDIM and let cπ(i) denote the component which contains i. Let gij denote the number of

independent interactions between i and j in the network g and let hij denote the maximum possible

such independent interactions between i and j in any network. The likelihood of observing the data

is given by:

Lh;g(π, pin, pout) = C ×i∈N [(×j∈cπ(i)(p
Sij
in )gij (1− pSijin )(hij−gij)

(×j∈N\cπ(i)(p
Sij
out)

gij (1− pSijout)(hij−gij)]
Then the likelihood approach will be to:

Choose {π, pin, pout} to maxLh;g(π, pin, pout)

such that π ∈ ΠDIM ,

pSin > pSout for all S

For the next few propositions let (DIM∗, π∗, p∗) denote the true data generating process. The

next proposition proves that this method is consistent.

Proposition 5 Let nt be a sequence of population size; such that the network size nt(nt−1)→∞.
Generate gt using (DIM∗, π∗, p∗). Let πt, pt be the maximisers of the likelihood for network gt.

Then as t→∞, πt → π∗ and pt → p∗.

The next proposition says that the likelihood will strictly increase as we add dimensions of

identity which are part of DIM∗.

Proposition 6 Let Lh;g(DIM) denote the maximised likelihood when searching over dimensions

DIM. Let D be a dimension such that D ∈ DIM∗ but D /∈ DIM and let DIM′ = {DIM, D}.
Then as nt(nt − 1)→∞, Lh;g(DIM′) > Lh;g(DIM).

The above propositions suggest the following search algorithm:
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• Layer 1: Begin with one identity dimension, and find the highest likelihood. Repeat this for

all other dimensions. Find the dimension (as well as the partition and probabilities) which

maximises the likelihood.

• Layer 2: Use the dimension from layer 1, as the primary identity dimension. Combine that

dimension with a second identity dimension and find the pair which maximizes the likelihood.

• Layer k: Use the dimensions which maximised likelihood for layer k-1 as the primary set of

identity dimensions as the fixed dimensions of identity. Repeat stage 2 using the new fixed

dimensions of identity.

• Within a layer, for any set of dimensions, start with the finest community structure (all blocks

separate) and keep making it coarser (by combining blocks) until the likelihood is maximized.

Hypothesis Testing: Once we have the maximised likelihood for any layer, we want to check

and see if this likelihood is significantly different from likelihoods at layers lowers than this. Because

at each layer we are adding another dimension of identity to the last layer, we will be interested

in knowing if for DIM′ = {DIM, D}, the maximised likelihood using DIM′ is significantly more

than the maximised likelihood using DIM. Let π(π′) be the community structure which maximises

likelihood if dimensions are DIM(DIM′). The form of the likelihood function will be different

depending on whether we use π′ or π. We would like to pick the partition and probabilities which

maximise the likelihood, and by introducing a new variable λ ∈ {0, 1} we can think of the problem

as being:

M(λ, p) = max
λ,p
{λ(Ls;g(π, p)) + (1− λ)(Ls;g(π

′, p))}

The maximised likelihood under DIM is maximum of M(λ, p) when we constrain λ = 1 and

restrict p ∈ PDIM. Applying standard LR techniques we can check if the maximised likelihood

under DIM′ is significantly greater.

We want to compare the case where there is no partition to the maximised likelihood under

layer 1. If there is no partition, then the entire sample is one community and there is only the

probability of making links within the community. Under layer 1, the data is (potentially) parti-

tioned using one dimension of identity. In this case, there are three probabilities of making links:

{probability of being in the same community with same characteristic, probability of being in the

same community with different characteristic, probability of being in different community with
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different characteristic}.9 By allowing the data to be partitioned along one dimension, we add 3

degrees of freedom over the case with no partition - two for the added dimensions of probability

and one for λ. Similarly, by allowing a layer of two, we add seven degrees of freedom over the case

with no partition. The layer of two adds five degrees of freedom over the layer of one.

3.2 Estimating Community Structure in Ghana

The data was collected by Chris Udry and Markus Goldstein over the course of two years and fifteen

modules in a four village clusters in Eastern Region of Ghana. In each village 60 couples/triples were

questioned. The network data used here was collected by asking each individual in the sample about

seven randomly selected (without replacement) from the sample and three focal village residents.

The questions asked were:

Could you go to if you had a problem with unhealthy crops?

Could you go to for advice about when to apply a new kind of fertilizer?

Could you go to if you wanted to discuss changing your method of planting?

Could you go to if you wanted to find a buyer for any of your crops?

If we think of the village residents as the population participating the network formation game,

then the randomly selected 60 couples and further their links with randomly selected seven in-

dividuals from within that sample, allows us to see a randomly selected portion of the network.

Analysing the structure of connections within this portion of the network would give us a good idea

of the actual network.

I also use data on identity and this includes information on the respondent’s religion, clan,

gender, if they are the first of their family to reside in that village, and the crops grown.

3.2.1 Characterization of Data

The network data I use here looks at four related information networks which look at information

flows on unhealthy crops, fertilizers, methods of planting and buyers. Table 1 gives the summary

statistics for the link variables and it turns out that each respondent on average contacts approx-

imately three from his sample of ten for information on unhealthy crops, fertilizers and methods

of planting, and for information on buyers. From Table 2, we can see that the four kinds of links

are highly correlated. In fact looking at the data it turns out that for many respondents, if they

ask their matched respondent about any one unhealthy crops, fertilizers and methods of planting,

9We constrain probability of being in different community with same characteristic to being equal to zero, since
we assume the blocks move together.
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then they ask about the other two as well. For this reason, the rest of the analysis will take into

consideration only the link indicated by the first question on unhealthy crops.

We need to be able to sort people into groups along different dimensions of identity. The

summary statistics for the identity variables used for the all the respondents are presented in Table

3. The variables used are whether the respondent is the first of family in the village, the religion

of respondent10, whether the respondent grows pineapple or not11, respondent’s clan12 and gender.

For each of the identity variables, I construct another variable which take the value 1 if both the

respondent and his match have the same characteristics (or belong to the same group) under that

identity dimension. The summary statistics for these similarity variables are presented in Table 4.

The correlation structure of the links with the identity variables is presented in Table 5. The

variables are such that they take a value of 1 if both the respondent and the match share the

same characteristic in that identity dimension and 0 otherwise. As can be seen, some of the

correlations are negative, implying that links are more probable when the characteristics is not the

same and that there might be gains to having links with individuals with different characteristics.

Another explanation might be that different identities have different pieces of information, and

the respondent values more the information possessed by someone he does not share the identity

characteristic with.

3.2.2 Community Structures in the Four Villages

Table 6 shows the results when we search over layer 1. For each village and each dimension of

identity I report the log likelihood corresponding to the best partition of that village along that

dimension. For the maximised log likelihood, I also report whether this likelihood is significantly

different from the baseline likelihood of assuming no partition and the probability of the link not

depending on identity. ‘-Inf’ indicates the fact that no feasible partition exists along that dimension

of identity. We see that a for most of the villages there is in fact no feasible division along the

variable ‘Firsthere’, implying that there a lot of links across those who are the first of the village

here and those who are not. We find that villages 1 and 3 divide along clan, village 2 divides along

pineapple growers and village 4 divides along religion. But of these divisions only the divisions for

village 1 and 4 are significantly different from the baseline assumption of no division.

Next we look at partitions along layer 2 in Table 7. We keep one dimension fixed (at the one

10I keep only the religions which had at least 5 members
11pineapple was a relatively new crop at the time of the survey and we would expect those who did crop pineapple

to want to share information with each other
12again I keep only the clans which have at least 5 members
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which maximised likelihood at layer 1) and to this we add the other 4 dimensions and report the

maximising likelihoods along the two dimensions. We see that all these likelihoods are significantly

different from the baseline likelihood. Village 1 divides along clan and religion, village 2 divides

along religion and pineapple growing, village 3 divides along clan and religion; and village 4 divides

along gender and religion.

To get a better understanding of the community structures, we present four graphs show the

community structures for village 3 and 4 for layer 1 and 2 (Figures 13, 14, 15, and, 16). The most

interesting results are for village 4, which divides along religion when searching over layer 1. It

shows three religions combining to form one community and the Pentecostal’s forming a separate

community. This is contrary to our result for Nash equilibrium with one dimension of blocks being

all connected or separated. Then this kind of division points to the presence of another dividing

dimension of identity. In the next figure, Figure 13, we see that in fact, this village shows layers of

divisions. It first divides along gender and then further subdivides the females by religion. Religion

is in fact a very strong dividing line for women, who in many cases are more likely to link to other

men than to women with a different religion. The division along gender is more difficult to explain,

but it might be the case that women just participate less in information networks.

4 Conclusion

This paper presented looked at the impact of identity on networks. We saw a theoretical model of

network formation which allowed for the choice commitments to identity simultaneously with the

choice of links. The Nash networks arising in this framework exhibited partition along identity,

and, interestingly, these partitions are not unique. In other words, they allow for the fact that

populations with similar identity profiles might be partitioned very differently. If we restricted

attention to those Nash equilibria where players strictly preferred their link strategy to any other,

the network structures that emerged, featured center sponsored stars of strongly committed players

linked together by less committed players.

Given that the Nash networks could have many different partitions, the empirical section of

the paper proposes and implements a methodology to extricate the salient identity dimensions and

partition given network data. Applying the methodology to network and identity data from four

villages in Ghana, we see that the four villages featured different partitions. In other words, the

multiplicity of Nash equilibria is bourne out in the data.

These results point to the fact that partitions in societies along a particular identity dimension
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might be seen as a coordination problem - players could as well have coordinated to partition along

some other dimension. It also points out that the population as a whole chose to partition along

that dimension rather than choose any other dimension or none. Since, over time, these partitions

seem to change even though the underlying population identity profile does not, future work could

focus on the understanding the evolution of these changes.
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A Network Formation Proofs

A.1 Proof for Nash Networks in One-Dimensional Case

Lemma 1 If any k ∈ Bi belongs to a non-singleton component C(g), then Bi ⊆ C(g).

Proof. Suppose k ∈ Bi belongs to a component C(g) and assume to the contrary k′ ∈ Bi

and k′ ∈ C ′(g). Both k and k′ must be receiving or forming some links, and these must have

non-negative payoffs. Lets consider the possible scenarios:

1) If either k′ or k forms no links then the player who does not form links will wish to deviate

to choosing θ = 1 and form a link with the other.

2) If both form links, and assume that the links of k are more profitable than those of k′, then

k′ could profitably deviate to choosing θk′ = 1 and form a single link with k. Since k′ will then be

accessing all of the links of k using a single link, he will make higher profits than k.

Lemma 2 If gkl = 1 for k ∈ Bi and l ∈ Bj where i 6= j, then the network is connected.

Proof. Let k and l belong to the component C(g). From the previous lemma it must be that

Bi ⊆ C(g) and Bj ⊆ C(g). Since k and l are connected, it must be that this link if profitable. Again

from the previous lemma we know that either Ba, where a /∈ {i, j}, has no link or it is connected.

If it has no links then any member of Ba can do better by setting θ = 0 and forming a link with

k or l. If on the other hand Ba is connected and belongs to some other component C ′(g), then it

must be that C ′(g) is minimally connected, and so there must be at least one player within C ′(g)

who does not form any links with any other player in C ′(g). This player can then set θ = 0 and

form a link with k or l.

A.2 Proof for Strict’ Nash Networks One-Dimensional Case

Lemma 3 All player’s who choose to make links only within their characteristic will choose θ = 1

while all player’s who choose to make links with players outside their characteristic will choose

θ = 0

Proof. Since we restrict attention to θ ∈ {0, 1}, this must be so. Though choice of θ for players

not forming any links is uncertain.

Lemma 4 If gkl = 1 where k, l ∈ Bi1 then it must be the case that gkm = 1 for all m 6= k,m ∈ Bi1
and there will be no other links within Bi1 (This structure will be referred to as the Bi1 − star)
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Proof. Suppose gkl = 1 where k, l ∈ Bi1 and let k, l ∈ C(g). It must be that Bi1 ∈ C(g).

Let m ∈ Bi1 where m 6= k, l. Since forming a link with k or l costs m the same and has the same

benefits, in a strict nash m will not form either link. Moreover, m will also not form a link with

anyone linked to k or l, because linking to k or l is weakly better than that. If glm = 1 then k is

indifferent between being linked to l or switching to a link with m, hence l and m must not have a

direct link. Since m must be connected to k, l in some way, the only possibility besides gkm = 1, is

one where gk′m = 1 for some k′ /∈ Bi1 such that k′
g↔ k. Suppose wlog gk′k = max{gkk′ , gk′k} = 1,

but gkk′ = 1 is not possible because k would get the same benefits by linking to m and gk′k = 1 is

not strict nash because k′ is indifferent between linking to k or to l. Hence it must be that gkm = 1.

Lemma 5 In a Strict’ Nash, if Bi1 − star exists and is not a singleton, it forms links with all

l ∈ Bi0.

Proof. Suppose l ∈ Bi0 and l does not receive a link from Bi1 − star. Since in any Nash

network, all of Bi must belong to the same component, there must be some k such that l
g↔ k and

k
g↔ l′ for some l′ ∈ Bi1. Wlog assume gkl = 1 and gkl′ = 1. Since k will be indifferent amongst

linking to different member of Bi1, in a Strict’ Nash network it must be that gl′k = 1. But then

either k ∈ Bi1 or l′ would weakly prefer linking to l and so in Strict’ Nash is must be that gl′l = 1.

Lemma 6 In a Strict’ Nash, if, π({k}, {k}, Slk = 0, θk = θl = 0) < 0 for all k, l s.t. Slk=0; then,

only players with θ = 0 can receive a direct outside links. Moreover, the player receiving an outside

link forms/receives no other link with any other player who also has θ = 0.

Proof. Suppose not and k ∈ Bi and l ∈ Bj such that gkl = 1 and θl = 1. Since solely linking

to l is not profitable, it must be that l has some other links and let l′ be such that gl′l = 1. But

then it must be that the cost of a link between k and l′ can not be greater than the cost of a link

between k and l. And so in a Strict’ Nash, if k ∈ Bi and l ∈ Bj such that gkl = 1 then it must be

that θl = 0 and l can not be linked to any other player with θ = 0.

Lemma 7 In a Strict’ Nash, if π({k}, {k}, Slk = 0, θk = θl = 0) < 0 then any block Bi is internally

connected

Proof. Let l, l′ ∈ Bi. Similar to the last lemma, wlog, assume there is some k /∈ Bi such that

gkl = 1 and gkl′ = 1. Since π({k}, {k}, Slk = 0, θk = θl = 0) < 0 for the gkl = 1 and gkl′ = 1 to be
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sustainable, l and l′ must have other links. But linking to l or linking to l′ is the same in terms of

cost and benefits, implying that neither can receive any links. So they both must be making links

and moreover only to players choosing θ = 1. If l or l′ made links to someone from Bi1,then they

would want to switch to θ = 1. So they must be making links to Bj1 where i 6= j. But from the

previous lemma, an external link to any player choosing θ = 1 is not possible. And so in a Strict’

Nash network, Bi must be internally connected.

Lemma 8 In a Strict’ Nash, if π({k}, {k}, Slk = 0, θk = θl = 0) < 0 and gkl = 1 for k ∈ Bi and

l ∈ Bj , then it must be that every other member of Bj belongs to the B1j − star.

Proof. Since π({k}, {k}, Slk = 0, θk = θl = 0) < 0; from an earlier lemma we know that Bj

must be internally connected. From another lemma we know that l cannot have any links with l′

if θl′ = 0. Which means that the rest of Bj must choose θ = 1. l will not sponsor any links to any

member of B1j because then he would want to switch to θ = 1. Implying that B1j is linked within

itself and then sponsors a link to l. And so we must have a B1j − star.

Lemma 9 In a Strict’ Nash, if π({k}, {k}, Slk = 0, θk = θl = 0) < 0 and glk = 1 for l ∈ Bi and

k ∈ Bj and θk = 0, then all external links are sponsored by Bi.

Proof. Suppose not and some x /∈ Bi makes an external link to y. The network must be

connected and so suppose wlog, l forms a links with y. If θx = θy = 0 then l will be indifferent

between linking to x or y. So suppose θx = 1. But in that case, x will be indifferent to linking to

y, k.

Lemma 10 In a Strict’ Nash, if π({k}, {k}, Slk = 0, θk = θl = 0) > 1 and glk = 1 for l ∈ Bi and

k ∈ Bj and θl = 0, then either Bi1 − star exists and sponsors a link to l or l forms the center of

the star for Bi1.

Proof. If l forms a link with some l′ ∈ B1i, then l must form links with all other member of

Bi1 by strictness. In other words, l should either be the center of the Bi1− star or it will receive a

link from them.

A.3 Proof for Nash Network in Multi-Dimensional Case

Lemma 11 The Minimal Separating Dimensions DIM1 from a network g are unique.
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Proof. Suppose not and that there exist DIM′ 6⊂ DIM1 such that DIM′ are also minimal

separating dimensions. But if they are both separating dimensions, then there are no links across

different Bi ∈ Block(DIM′), neither across different Bj ∈ Block(DIM1). Which would imply that

the set of dimensions DIM1∪DIM′ are also separating dimensions. In other words, DIM1 cannot

be the minimal separating dimensions to begin with.

Lemma 12 A nash network must be minimal.

Proof. If it was not, then some links could be deleted without impacting connectivity.

Lemma 13 In any nash network g, if any k ∈ C(g) and k ∈ B where B ∈ Block(DIM) and

|C(g)| = x > 2, then B ∈ C(g).

Proof. Similar to the one-dimensional case, suppose k′ ∈ B and k′ ∈ C ′(g) 6= C(g). Since

k ∈ C(g), it must be receiving/forming some links within C(g) which we assume are (wlog) more

profitable than the links of k′. For any link structure, it will be profitable for k′ to set θk′ = 1 and

add a link to k.

Lemma 14 Either the network is connected/emppty or there exists a set of minimal separating

dimensions.

Proof. If the network is neither connected nor empty’ then it must be that either DIM1 =

DIM or φ will work as separating dimensions. We have earlier proven, if separating dimensions

exist, the minimal separating dimensions are unique.

Lemma 15 Suppose along any DIM1 ⊂ DIM, there is some Bi ∈ Block(DIM1) which is not

connected within itself and no member of Bi is connected to any member outside Bi. Then it must

be that either Bi is connected or empty, or there exists some DIM1 ⊂ DIM1,Bi ⊆ DIM, such that

g allows no links across the blocks of Block(DIM1,Bi) within Bi.

Proof. Such a partition must exist because DIM1,Bi = DIM, or φ will definitely work. We

need to show that DIM1 ⊂ DIM1,Bi , which follows from the fact that since all characteristics

along DIM1 are the same for all members of Bi, it must be that any link will be cost minimized

if its along DIM1 and more dimensions.
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A.4 Proof for Strict’ Nash in Multi-Dimensional Case

Lemma 16 In a strict nash network, if l, k ∈ Bi1 and l forms the lk − link then the members of

Bi1 form a unique center-sponsored star with l in the center (henceforth called a Bi1 − star)

Proof. Same as in the one-dimensional case.

Lemma 17 Assuming π(k, k, Slk,Θ) ≤ 0 for all S 6= 1, each block within a component of the nash

network must have internal connections. Using A.M1, each block, Bx, must have a Bx1 − star.

Proof. Suppose {B1, ..., Bx} ∈ C(g) and suppose contrary to the assumption, B1 does not

have any internal connections. But then all members of B1 must be participating in external links.

Since external links are expensive enough, each external link must end with a cluster of internally

connected individuals. If the members in B1 are greater than the number of blocks, as implied by

A.M1, then this in not possible.

If AM.1 does not hold, then the block could be scattered among the tails of other stars. But

even then, we must have at least two blocks for whom there are internal links.

Lemma 18 If any l ∈ Bx forms an external link, then he must either receive a link from Bx1−star
or be the part of the tail of some other By1− star where Bx 6= By and this tail should have no links

to the Bx1 − star

Proof. Suppose l ∈ Bx does not receive a link from Bx1−star. He will not link to the Bx1−star,
because he is indifferent to linking to any one of them. He must be forming an external link which

leads to some By1−star.. The only way for l to be connected to the Bx1−star is for him to receive

an external link which would indirectly link him the Bx1 − star.

Lemma 19 If glk = 1, where l, k ∈ C(g), l ∈ B and all other p ∈ C(g) such that Slp ≥ Slk or

Slp < Slk, then all k′ ∈ C(g) such that Slk′ = Slk either receives a direct link from l′ where l′
g←→ l

and Sll′ > Slk or is k′′
g←→ k′ and Sk′′k′ > Slk

Proof. If glk = 1, then θl = θk = Slk. The only way they could be different is by choosing

commitment less than Slk and the only reason θl or θk could be different is if they made some other

links, but there are no other links to be made which are less than Slk.

Since θl = θk = Slk, noone would form an Slk link with either of them due to strictness. Infact

all Slk links must originate with l or some l′ who is linked to l and Sll′ > Slk.
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B Community Structure Proofs

B.1 Alternative Representation

An alternative representation using log-likelihood instead of likelihood is also possible. For that we

define a few terms

In(S, π) = {ij | Sij = S, j ∈ cπ(i)}

Out(S, π) = {ij | Sij = S, j /∈ cπ(i)}
In(S, π) collects all the pairs which have similarity index S and which belong to the same

community, while Out(S, π) collects all the pairs which have similarity index S and which belong

to the different communities. Let

T (S, g) =
∑

gij
Sij=S

and T (S, h) =
∑

hij
Sij=S

denote the total links for all those pairs who have the same similarity index, S, under g and

the total possible links for the same pairs.

T In(S,π)(S, g) =
∑

gij
ij∈In(S,π)

and T In(S,π)(S, h) =
∑

hij
ij∈In(S,π)

T In(S,π)(S, g) is the total links observed under g for all pairs belonging to In(S, π) and T In(S,π)(S, h)

is the maximum possible links we could observe in any network for the pairs in In(S, π). TOut(S,π)(S, g)

and TOut(S,π)(S, h) can be similarly defined. Using these definitions and ignoring the constant, we

get the log-likelihood:

ls;g(π, pin, pout) = log(Ls;g(π, pin, pout))

=
∑
S


(T In(S,π)(S, g) ∗ log(pSin))+

((T In(S,π)(S, h)− T In(S,π)(S, g)) ∗ log(1− pSin)))

+(TOut(S,π)(S, g) ∗ log(pSout))

+((TOut(S,π)(S, h)− TOut(S,π)(S, g)) ∗ log(1− pSout))


Defining kS1 = log(pSin/(1− pSin)), kS2 = log(1− pSin), kS3 = log(pSout/(1− pSout)), kS4 = log(1− pSout),

we get:

ls;g(π, pin, pout) =
∑
S

{
kS1 ∗ T In(S,π)(S, g) + kS2 ∗ T In(S,π)(S, h)

+kS3 ∗ TOut(S,π)(S, g) + kS4 ∗ TOut(S,π)(S, h)

}
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B.2 Proofs of Proposition 6

Proof. Firstly, we fix the dimensions as the largest possible, and next, if we fix the partition, the

likelihood will be maximised at the probabilities given by:

p̂Sin(π) =
T In((S,π)(S, g)

T In((S,π)(S, h)

p̂Sout(π) =
TOut((S,π)(S, g)

TOut((S,π)(S, h)
Given this result, we get consistency by showing that as size becomes larger, it must be that

for any π 6= π∗,

Lh;g(π
∗, p̂(π)) > Lh;g(π, p̂(π))

There are countably many ways in which π∗ and π can differ, but the manner of difference will

not affect result. I consider one particular way in which they are different to illustrate the proof.

Suppose that the only difference is that within all links with similarity index S; π has more pairs

within the same component, or:

In(S, π) ⊃ In(S, π∗)

Out(S, π) ⊂ Out(S, π∗)

and

Out(S, π∗) ∩ In(S, π) = K

Under this particular π and π∗, the differences in log-likelihood using p̂(π) is:

Lh;g(π, p̂(π))− Lh;g(π∗, p̂(π)) =

∑
ij∈K

gij

 ∗ log(p̂Sin(π))

+

∑
ij∈K

hij − gij

 ∗ log(1− p̂Sin(π))

−

∑
ij∈K

gij

 ∗ log(p̂Sout(π))

−

∑
ij∈K

hij − gij

 ∗ log(1− p̂Sout(π))

Taking the limit of the derivative with respect to p̂Sin(π), we get:

lim
nt(nt−1)→∞

(
∂(Lh;g(π, p̂(π))− Lh;g(π∗, p̂(π)))

∂p̂Sin(π)

)
= lim

nt(nt−1)→∞


∑
ij∈K

gij

p̂Sin(π)
−

∑
ij∈K

hij − gij

1− p̂Sin(π)

 < 0
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The last inequality follows because as nt(nt − 1)→∞,∑
ij∈K

gij∑
ij∈K

hij
= pSout < p̂Sin(π)

(Since p̂Sin(π) in the limit will be some convex combination of pSin and pSout).

B.3 Proof of Proposition 7

Proof.

Let (π, pin, pout), (π′, p′in, p
′
out) and (π∗, p∗in, p

∗
out) be the community structure and the proba-

bilities of interaction which maximise the likelihood restricting dimensions to DIM, DIM′ and

DIM∗.

Now, if DIM∗ are the true partitioning dimensions, it must be that the true partition and

probabilities ((π∗, p∗in, p
∗
out)) must be different from both ((π, pin, pout)). Also, since DIM′ includes

one more dimension than DIM, it must lead to a partition or probabilities closer to the true

partition/probabilities. Hence, using similar methodology as in the previous proposition, we must

have the maximised likelihood under DIM′ strictly better than under DIM′.
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C Network Formation Graphs

(For all the following figures: Each box represents a player. It lists the identity and then the

corresponding commitment levels in the brackets)
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Figure 1: Unconnected Nash
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Figure 2: Separated Nash
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Figure 3: Connected Nash
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Figure 4: Strict Nash, Generalised Center Sponsored Star
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Figure 5: Strict Nash, Electron Star
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Figure 6: Strict Nash, Unconnected Center-Sponsored Stars
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Figure 7: All possible blocks under the three dimensions of {Color, Height, Sex}
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D Community Structure Graphs
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Figure 12: Sorting by Shape
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E Community Structure Results

E.1 Community Structure of Village 3 and 4
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Figure 13: Village 3, Depth 1: Clan
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Figure 14: Village 3, Depth 2: Religion and Clan
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Figure 15: Village 4, Depth 1: Religion
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E.2 Tables

Table 1: Variables Measuring Presence of Link

Variable Definition Mean
(Std Dev)

Askprob 0-1 variable taking value 1 if respon-
dent would ask match if they had a
problem with unhealthy crop

0.358848

(0.47986)

Askfert 0-1 variable taking value 1 if respon-
dent would go to match for advice on
new fertilizer

0.334156

(0.471889)

Askplant 0-1 variable taking value 1 if respon-
dent would go to match to discuss
planting method

0.330041

(0.470421)

Askbuyer 0-1 variable taking value 1 if respon-
dent would go to match for finfinf a
buyer

0.316049

(0.465124)

Table 2: Correlation amongst Link Variables

Askporb Askfert Askplant Askbuyer

Askprob 1

Askfert 0.8305 1

Askplant 0.8834 0.8906 1
hline Askbuyer 0.6651 0.6631 0.7088 1
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Table 3: Summary Statistics of Identity Variables

Variable Definition Mean
(Std. Dev.)

Firsthere variable taking value 1 if respondent
is not the first of their family in the
village and 2 o.w.

1.174468

(0.380322)

Resprel religions Presbyterian, Methodist,
Pentacostal and Animist/Traditional
are codede as 1,2,3 and 4 resp.

2.461847

(1.054727)

Pineyes variable taking value 1 if not a pineap-
ple grower and 2 otherwise

1.440329

(0.497451)

Clan 6 clans are coded as numbers 1-6 3.26506
(1.832179)

Gender variable taking value 1 if respondent
is female, 2 if male

1.420814

(0.494811)

50



Table 4: Summary Statistics of Variables Measuring Similarity

Variable Definition Mean
(Std. Dev.)

SGender 0-1 variable taking value 1 if respon-
dent and match have the same sex and
0 o.w

0.491282

(0.500181)

SClan 0-1 variable taking value 1 if respon-
dent and match have the same clan
and 0 o.w.

0.385185

(0.486839)

SFirsthere 0-1 variable taking value 1 if either re-
spondent and match were both first
from their families in the village, or
both not the first in the village and 0
o.w.

0.749541

(0.433476)

SResprel 0-1 variable taking value 1 if respon-
dent and match have the same religion
and 0

0.395062

(0.489065)

SPineyes 0-1 variable taking value 1 if either re-
spondent and match both have experi-
ence in pineapple, or if both don’t have
experience in pineapple and 0 o.w.

0.514555

(0.500002)

Table 5: Correlations between the Link and Similarity variables

Askprob Askfert Askplant Askbuyer

SGender 0.0112 -0.0028 0.0014 0.0253

SClan 0.0878 0.0858 0.0761 0.1201

SFirsthere -0.0428 -0.0457 -0.0464 -0.0277

SResprel 0.0617 0.0291 0.0193 -0.0307

SPineyes 0.0103 -0.0054 -0.0446 -0.0186
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Table 6: Maximised Likelihood at Depth 1

Village 1 Village 2 Village 3 Village 4
Dimension (obs = 200) (obs = 82) (obs = 339) (obs = 219)

Firsthere -Inf -Inf -Inf -145.234

Religion -106.37 -51.4337 -232.831 -137.76**

Gender -Inf -50.8523 -234.798 -142.191

Clan -103.064* -Inf -232.46 -143.232

Pineyes -Inf -50.8418 -Inf -Inf

The maximized likelihood for depth 1 for each village is highlighted
‘-Inf’ denotes there was no feasible community structure along that dimension
* significant at 5%; ** significant at 1% (from no partition)

Table 7: Maximised Likelihood at Depth 2

Village 1 Village 2 Village 3 Village 4
Dimension (Depth 1: (Depth 1: (Depth 1: (Depth 1:

Clan) Pineyes) Clan) Religion)

Firsthere -99.5182 -Inf -228.753 -Inf

Religion -96.6904** -42.5427* -223.328** -

Gender -Inf -46.4117 -Inf -126.877**

Clan - -44.7001 - -132.56

Pineyes -99.274 - -Inf -135.845

The maximized likelihood for depth 1 for each village is highlighted
‘-Inf’ denotes there was no feasible community structure along that dimension
* significant at 5%; ** significant at 1% (from no partition)
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