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Instituto Tecnológico Autónomo de México (ITAM).
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Abstract- In this paper we consider Johnson distributions as a tool to analyze
and model the non normal behavior of hedge fund indices. After effectively ob-
taining the parameters for these distributions in the case of the CSFB /Tremont
indices, we use the Omega parameter to test how efficiently the Johnson distribu-
tions reflect the presence of occasional large negative returns. We conclude that,
although Johnson distributions yield improved models and confirm that skewness
and kurtosis are relevant in the evaluation of performance, they still fail to capture
a substantial part of the tail risk, specially in those cases when we have high kurtosis.
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1. Introduction.

It is a well accepted empirical fact that returns, whether from long only stocks or bonds

or hedge funds, often show greater tendency to produce extreme returns than a normal

distribution. But in the case of hedge funds or portfolios of hedge funds, in addition to the

presence of these “fat tails” the departure from normality often includes asymmetry and

the so called “short-option” behavior, in which occasional large negative returns appear

scattered among many small positive returns.

This departure from normality is partly a consequence of the intrinsic design of hedge

fund strategies, for which the main objective is to generate positive returns independent

from market conditions. While long-only managers define their returns relative to a

benchmark and hence they obtain a fairly normal distribution, hedge fund managers

define their return objective in absolute terms, not relative to market or benchmark,

striving to avoid any market correlation. Due to the legal status of hedge funds, their

managers have the possibility to use derivatives, short sell and explicit leverage to raise

returns or cushion risk. As a consequence of these leveraged positions, the distributions

of returns frequently show occasional losses which under the normality hypothesis would

be highly improbable. There are also other factors which are related to the non-normality

observed in hedge fund returns: the paucity of data, the lack of statistical rigour in some

of the information available, the presence of autocorrelation, etc.

Since hedge funds depart strongly from the assumption of (log)normally distributed

returns without serial correlation, performance measures such as the Sharpe ratio or

traditional approaches through mean-variance analysis seem inadequate, since they ignore

the effect of higher moments. This had led to the introduction of new methods to measure

risk and performance for non-normal distributions. We can recall some recent examples

in this direction:

• The Omega measure of Keating and Shadwick (2002) which provides a new ap-

proach to study return distributions and may be used as a performance measure.

The Omega function captures higher moment information and also incorporates

sensitivity to return levels.

• Modified Value at Risk (Signer and Favre, 2002), a risk measure in which the usual

VaR obtained from a normal distribution is adjusted for the estimated skewness and

kurtosis using the Cornish-Fisher expansion.
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• Adjusting Sharpe ratio to incorporate information from downside deviation (John-

son, D., Macleod, N. and C.Thomas, 2002).

From an unconditional point of view, one way to deal with non normality is to try to

find some other known distribution which fits the empirical distribution of returns. Several

attempts have been done in this direction, for example using Student’s t distributions or

Pareto-like distributions. Having an explicit model which takes into consideration the

skewness and kurtosis of returns gives the possibility of performing simulations of the

behavior of returns, not only to analyze future scenarios, or to obtain measures of risk

and performance, but also to replicate or complete faulty sets of data.

In this paper we will consider Johnson (1949) system of SU and SB distributions as a

system with which we can consistently approximate the empirical distributions of hedge

fund returns. Johnson SU distributions have already been mentioned in some attempts to

approximate the non-normal behavior of stock returns, 1 but there is little information on

the numerical efficiency of these models when applied to actual market data or on their

power to capture the effects of infrequent but largely negative returns which characterize

the distributions of some hedge fund strategies.

Hence, using a fund index as proxy, we will examine the efficiency of Johnson system

to model the distributions of different hedge fund strategies, in particular those who show

a “short option” behavior. Although the modelled distributions reflect the presence of

substantial tail risk, the large negative returns are often too rare to affect the distribution

parameters and may remain undetected. To see if this is the case, we will use the Omega

performance measure of Keating and Shadwick (2002) as a test of how efficiently the

Johnson distributions reflect this “short option” effect.

2. Hedge Fund Indexes.

When studying hedge fund performance from a statistical point of view we face some diffi-

culties. First, there is the pausity of data: due to the short history of hedge funds and the

fact that the hedge fund industry is largely unregulated and it is not mandatory for funds

to report performance, we often find ourselves with not enough data available. Moreover,

1For example, from a conditional point of view, Johnson’s SU -distributions have been used to propose
GARCH-SU models for the estimation of extreme tail behavior of stock market indices (Choi, 2001).
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until very recently, there was a total lack of transparency of hedge fund investment strat-

egy and statistical issues concerning the rigour of hedge fund performance data were not

discussed at all. This situation has begun to change and some hedge fund managers now

present their results and their allocation strategies in a public or semipublic way. Since

obtaining direct and valid information from hedge fund managers about the performance

or composition of hedge funds is difficult for a non-investor, and since managers follow

different strategies which is not possible to compare, we will not study the behavior of

individual hedge funds and instead we will use hedge fund indices as proxy. These indices

are provided by several data vendors which set up hedge fund data bases and they are

meant to be used as benchmarks for measuring hedge fund performance. Each data ven-

dor provides a global index as well as subindices which correspond to different investment

strategies. There are at present at least seven major databases available in the market,

each one with its own policy for selecting and evaluating the hedge funds in the index.

Thus, although these vendors usually provide accurate information, there are limitations

for using and comparing these indices:

1. There can be different biases in the database: survivor bias (exclusion of defunct

funds), autocorrelation bias and selection bias. The limitation of the sample size

and the inaccuracy of data can also distort results.

2. Each data vendor has a different policy for excluding/including funds in the index,

classify investment strategies or determining the weighting of funds in the index.

Hence it is difficult to compare indices from different vendors. In fact, there can be

low correlation between different indices representing the same investment strategy.

3. There is a wide variation in sub-index categorization, so the comparison across

global indices is unrealistic.

In view of the above, it seems that hedge fund indices are still not a true benchmark for

performance. However, we can use them as a proxy of the average behavior associated

with a specific strategy.

In this paper I will consider in particular the CSFB/Tremont hedge fund indices, with

data covering from 1994 to 2003. This index is constructed with TASS database, which

tracks about 2300 funds. It is composed of a global index together with 9 subindices

provided using a subset of 650 funds, each subindex corresponding to a different strategy:

Convertible Arbitrage, Dedicated Short Bias, Emerging Markets, Equity Market Neutral,
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Event Driven, Fixed Income Arbitrage, Global Macro, Long/Short and Managed Futures.

Funds are reselected on a quarterly basis and the selection criteria include a minimum

fund size of $ 10MM and the requirement that the fund should have an audited financial

statement. In the following table we have a summary of the basic statistics for the CSFB

indices. For comparison, we have included at the bottom statistics for the S&P 500 and

for the JP Morgan treasury bond index.

Table 1: Basic statistics for CSFB/Tremont hedge fund indices*

Annualized Annualized Jarque-
returns volatility Skewness Kurtosis Bera

CSFB/Tremont HF Index 10.59% 8.86% 0.107 4.27 7.57
Convertible Arbitrage 10.14% 4.90% -1.56 6.77 109.01
Ded Short Bias 2.11% 18.34% 0.839 4.85 28.41
Emerging Markets 6.46% 18.49% -0.473 6.04 46.21
Equity Mkt Ntrl 10.45% 3.20% 0.139 2.959 0.35
Event Driven 10.37% 6.27% -3.279 23.225 2053
Fixed Inc Arb 6.64% 4.09% -3.168 18.05 1211.04
Global Macro 14.15% 12.65% -0.025 4.495 10.16
Long/Short 11.56% 11.47% 0.245 5.7631 35.75
Managed Futures 7.46% 12.08% 0.034 3.663 2.01

S&P 6.76% 15.66% -0.36 2.85 2.61
JPMTUS 1.46% 4.28% -0.193 3.05 0.24

*Evaluated over a sample of 109 monthly returns from 1/1994 to 2/2003.

When Jarque-Bera test for normality yields a value > 5.99, we must reject the nor-

mality hypothesis at a 5% significance level. Hence, with the exception of Equity Market

Neutral and Managed Futures (together with treasury bonds and S & P500) in all cases

we have to reject the normality hypotheses. In general all indices have negative skewness

and high kurtosis, which means that large negative returns are more likely than would

be the case under a normal distribution. This is specially the case for the Event Driven

and Fixed Income Arbitrage indices. It is also interesting to note that, while in long-

only equity investments the volatility usually is around 15% or 20% per year, average

volatility for hedge funds is significantly lower. Finally, on a risk adjusted basis (mean

return/standard deviation) the index that ranks higher is Equity Market Neutral.
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As an example of their departure from normality, figures (1) and (2) compare the

frequency of returns of Event Driven and Fixed Income Arbitrage indices with the normal

curve with the same mean and standard deviation. In both cases we remark the presence

of isolated large negative returns.

-0.1-0.075-0.05-0.025 0 0.025

5

10

15

20

25

Figure 1: Event Driven Index
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Figure 2: Fixed Income Arbitrage

It seems reasonable to think that a hedge fund manager must try to avoid symmetry of

returns by deforming the distribution to the right (more profit and fewer losses). Surpris-

ingly, in most of these indices things appear to go the other way around: the distribution

gains in negative skewness and gets higher kurtosis. It seems that the fund manager

improves the mean return by shortening the right hand tail and fattening the left one.

The left tails reflect high leverage, which correspond to a payoff similar to strategies that
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have short put option-like exposures. It seems the improved mean of hedge funds returns

is just the premium the market is paying for the exposure to leptokurtic distribution of

returns.

But leverage is not the only possible reason for the departure from normality. There is

also serial correlation. In the next table we present the autocorrelation coefficients of each

of the indices, considering lags from 1 to 5. Each correlation coefficient can be considered

as statistically significant at the 5% level if it lies outside ±0.22 and significant at the 1%

level if it lies outside ±0.3.

Table 2: Autocorrelation of hedge fund indices

AC(1) AC(2) AC(3) AC(4) AC(5)

CSFB Tremont 0.112 0.041 -0.005 -0.08 0.053
Convertible Arbitrage 0.562 0.427 0.154 0.127 0.08
Ded Short Bias 0.067 -0.073 -0.035 -0.103 -0.137
Emerging Markets 0.294 0.009 -0.02 -0.071 -0.09
Equity Market Neutral 0.294 0.192 0.092 0.019 0.042
Event Driven 0.34 0.147 0.031 0.002 -0.038
Fixed Inc Arb 0.408 0.099 0.025 0.072 0
Global Macro 0.055 0.046 0.082 -0.099 0.237
Long/Short 0.159 0.06 -0.045 -0.084 -0.178
Managed Futures 0.053 -0.099 -0.009 -0.019 -0.032

We see that some hedge fund indices, in particular the Convertible Arbitrage and Fixed

Income Arbitrage indices, exhibit highly significant positive autocorrelation (see figure 3).

High kurtosis and autocorrelation means that not only there are left fat tails but also

that the possible big losses are correlated, so there is some chance of losing a large amount

in one go.
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Figure 3: Autocorrelation Convertible Arbitrage

Finally, it is interesting to see how the different strategies are correlated between them-

selves and with the market (see Table 3). It is clear that hedge fund indices have a very

low correlation with bonds and in general, correlation with equities appears to be low.

Long/Short strategies have the highest correlation with S&P 500 (0.59 and 0.56 respec-

tively), while Dedicated Short Bias is negatively correlated almost with everything and

in particular with S&P 500 (-0.77). The low correlation with the market has induced

investors to include hedge funds in their portfolios to increase diversification while pre-

serving mean return. But here again we have to be careful since only under the normality

hypothesis we can conclude that zero correlation means independence. In a non normal

world, zero correlation is not equivalent to the independence in the movements of the

assets.

Table 3: Correlation between indices
S& P 500 JPMTUS CSFB C.A. DSB EM EMN ED FIA GM LS MF

S&P 500 1.00

JPMTUS -0.11 1.00

CSFB 0.48 0.10 1.00

Conv. Arb. 0.13 -0.01 0.40 1.00

Ded. Short -0.77 0.14 -0.48 -0.23 1.00

Emerging Mkt 0.49 -0.17 0.65 0.36 -0.56 1.00

Equity Mkt. N. 0.40 0.03 0.32 0.30 -0.41 0.25 1.00

Event Driven 0.56 -0.14 0.65 0.59 -0.61 0.71 0.38 1.00

Fixed Inc. Arb. 0.03 0.05 0.44 0.54 -0.07 0.31 0.06 0.38 1.00

Global Macro 0.23 0.23 0.86 0.29 -0.11 0.41 0.19 0.36 0.46 1.00

Long/Short 0.59 0.00 0.78 0.25 -0.75 0.59 0.34 0.66 0.19 0.42 1.00

Managed Futures -0.25 0.36 0.07 -0.30 0.29 -0.16 0.16 -0.27 -0.13 0.24 -0.10 1.00
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3. Johnson’s distributions.

Given a continuous random variable X whose distribution is unknown and is to be approx-

imated, Johnson (1949) proposed a set of normalizing translations. These translations

have the following general form

Z = γ + δ · g
(

X − ξ

λ

)
(1)

where Z is a standard normal random variate, γ and δ are shape parameters, λ is a scale

parameter, ξ is a location parameter and g(−) is one of the following functions, each one

defining a family of distributions:

g(y) =





ln(y), lognormal distribution

ln
(
y +

√
y2 + 1

)
, SU unbounded distribution

ln (y/(1− y)) , SB, bounded distribution

y, normal distribution

(2)

While the SU distributions are defined in an unlimited range in both directions, for the

bounded distributions the variate is bounded in both directions. After estimating param-

eters, the calculation of quantile or tail probability is simple, because these distributions

come from a simple transformation of a normal distribution.

Lets consider first the SU translation function

g(y) = ln
(
y +

√
y2 + 1

)
= sinh−1(y). (3)

Hence,

Z = γ + δ · sinh−1

(
X − ξ

λ

)
(4)

where λ must be positive. The shape of the distribution of X depends only on the

parameters γ and δ, so the distribution of the variate Y = X−ξ
λ

has the same shape as

that of X, and we can write

Z = γ + δ · sinh−1(Y ). (5)

Johnson’s SU -distribution can cover a wide range of skewness and kurtosis values. In

fact, Johnson constructed tables in which he computes γ and δ in terms of skewness
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and kurtosis. The expected value and the lower central moments of Y are given by the

following equations:

µ′1(Y ) = ω
1
2 sinh θ (6)

µ2(Y ) =
1

2
(ω − 1)(ω cosh(2θ) + 1) (7)

µ3(Y ) = −1

4
ω

1
2 (ω − 1)2(ω(ω + 2)sinh(3θ) + 3sinh θ) (8)

µ4(Y ) = −1

8
(ω − 1)2(ω2(ω4 + 2ω3 + 3ω2 − 3)cosh(4θ) + 4ω2(ω + 2)cosh(2θ) + 3(2ω + 1))

(9)

where ω = exp(δ−2) and θ = γ/δ. Observe that when θ = 0 we have µ3(Y ) = 0 and so

the distribution is symmetric. Note also that ω > 1 and µ3 has opposite sign to γ. The

skewness and kurtosis of Y , which we denote respectively as
√

β1 and β2, are given by:

√
β1 =

µ3

µ
3/2
2

, β2 =
µ4

µ2
2

(10)

Knowing our target values for skewness and kurtosis for the variate Y , the problem is

to obtain estimates the parameters γ and δ. This can be done in different ways. We

can use the tables computed by Johnson, but these are limited and often need second

order interpolation techniques. Another possibility is to use equations (7)-(10) to obtain

estimates for γ and δ. The efficiency of this method will depend on the rate of convergence

of the algorithm used to find a solution to the set of equations. Some algorithms for

approximating these solutions have been given by Hill,Hill& Holder (1976). It should be

noted that the behavior of these functions is quite unstable, as we can see, for example,

from the plot and contour plot of skewness in terms of the values of γ and δ (Figures 4

and 5).

There is also a method of quantile estimation introduced by Wheeler (1980). This

procedure gives estimators as good as the moments estimators and is usually easier to

handle. The general idea is that, using the relation w = exp((z − γ)/δ), we associate to

a conveniently chosen set of points −zn,−1
2
zn, z0,

1
2
zn, zn, a set of corresponding points in

the variable X: xp, xk, x0, xm, xn. The fact that any quantity of the form

xi − xj

xr − xs

=
g−1(wi)− g−1(wj)

g−1(wr)− g−1(ws)
(11)
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Figure 4: Skewness of SU distribution as a function of γ and δ

does not depend on ξ or λ is used to express γ and δ in terms of the five quantities

xp, xk, x0, xm, xn and then sample order statistics are substituted to obtain estimates γ̂, δ̂.

So first we have to obtain the sample statistics: x̂p, x̂k, x̂0, x̂m, x̂n. These five points serve

to approximate the shape of the SU distribution, which is summarized by the following

statistics:

t =
xn − x0

x0 − xp

tu =
xn − xp

xm − xk

(12)

Observe that the statistic t depends on the symmetry of the curve since it compares the

two tail lengths. On the other hand, tu gives the relative length of the tails compared to

the central part of the distribution.

Defining a = exp(−γ/δ) and b = exp(1
2
zn/δ) we obtain the equations

a2 =
1− tb2

t− b2
, b =

1

2
tu +

√
(
1

2
tu)2 − 1 (13)

The only conditions imposed for the existence of solutions are that b2 > t > b−2 and

tu > 2. We then obtain the estimators:

δ̂ =
1

2
zn/ln(b), γ̂ = −δ̂ln(a) (14)

Once we have these estimates for Y , we can make adjustments of scale and location. Since

Y = x−ξ
λ

, where X is the variate with whose distribution we are concerned, then if the
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Figure 5: Skewness contour plot

two first moments of Y are to be identical with those of X, we have:

λ = σ(x)/σ(y), ξ = E(X)− λE(Y ). (15)

The distribution function of a SU distributed variate X is given by the equation:

fX(x) =
δ

λ
√

2π
(
(x−ξ

λ
)2 + 1

)exp

[
−1

2

(
γ + δ · sinh−1

[
x− ξ

λ

])2
]

(16)

Before we turn to the next section it is important to recall that SU distributions,

although they cover a wide range of values for skewness an kurtosis, they do not cover

the whole (
√

β1, β2) plane. In fact, they only cover the region which is above the points

of the lognormal line (the line whose points correspond to lognormal distributions). The

lognormal line is given by the parametric equations

β1 = (ω − 1)(ω + 2)2 (
√

β1 > 0) (17)

β2 = ω4 + 2ω3 + 3ω2 − 3. (18)

For any thicker tail distribution than a lognormal, there is an appropriate SU distribution,

but pairs of values (
√

β1, β2) below the lognormal line, we have to consider the SB system of

distributions. Unfortunately, for this type of distributions there are no simple expressions

of the higher moments in terms of γ and δ, so we have to rely on Johnson’s tables or

apply numerical approximations.
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4. Fitting HF indices with Johnson distributions

We will know apply the above to the case of CSFB/Tremont indices. Looking back at

Table 1, the first question is to decide which distribution shall we use for the given values

of skewness and kurtosis. We find that those indices with more non-normal behavior,

Event Driven and Fixed Income Arbitrage, are precisely the indices which we cannot

approximate with SU distributions, since they appear considerably below the log-normal

line defined by equations (17) and (18). On the other hand, Equity Market Neutral is

almost on the lognormal line, as we can see in figure (6). In fact most of the indices appear

close to the lognormal line, something which suggests that the choice of the appropriate

distribution can be quite unstable.
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Figure 6: HF indices and log-normal line

According to the above, we will approximate the Event Driven and Fixed Income

Arbitrage indices using SB-distributions. In these cases we estimated the parameters

γ and δ performing numerical approximations with Mathematica. Table 4 displays the

values obtained for the parameters γ and δ for each of the CSFB/Tremont hedge fund

indices, indicating the Johnson translation system used in each case:
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Table 4: γ and δ of HF indices

E(x) st. dev Skewness Kurtosis Distribution γ δ

CSFB/Tremont Index 0.88% 2.56% 0.107 4.27 SU -0.12 2.12
Convertible Arbitrage 0.84% 1.41% -1.56 6.77 SU 1.1153 1.6282
Ded Short Bias 0.18% 5.29% 0.839 4.85 SU -1.56 2.41
Emerging Markets 0.54% 5.34% -0.473 6.04 SU 0.302 1.656
Equity Mkt. Neutral 0.87% 0.92% 0.139 2.9599 lognormal - -
Event Driven 0.86% 1.81% -3.279 23.225 SB -4.565 1.108
Fixed Inc Arb 0.55% 1.18% -3.168 18.05 SB -4.045 1.089
Global Macro 1.18% 3.65% -0.025 4.495 SU 0.0255 2.006
Long/Short 0.96% 3.31% 0.245 5.7631 SU -0.159 1.665
Managed Futures 0.62% 3.49% 0.03348 3.663 SU -0.0751 2.736

As an example, in figures 7 and 8 we plot the density curves of SB distributions

which approximate the empirical distribution of Event Driven and Fixed Income Arbitrage

indices.
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Figure 7: Event Driven SB-distribution

5. Testing the Johnson approximation with the Omega parameter

In order to define a measure of profit/loss which takes into account the higher moments

of a distribution of returns, Con Keating and William Shadwick (2001) defined a statistic
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Figure 8: Fixed Income Arbitrage SB-distribution

which can help investors to visualize the risk and return in a simple way. This statistic

is called Omega and can be calculated from the cumulative distribution function F (x) as

the quotient

Ω(L) =

∫ b

L
1− F (x)dx∫ L

a
F (x)dx

(19)

where L is a loss threshold defined by the investor, and (a, b) is an interval containing

the range of returns. Hence Ω : (a, b) → (0,∞) is a monotone decreasing function of

the return level L. This function allows us to compare returns for different assets and

to rank them according to the value of Ω(L) for different L. But it can also be used

as a tool to compare a theoretical distribution with the empirical distribution. Since

we can compute Ω(L) directly from the discrete return observations and also from the

corresponding Johnson approximation we will use it as a measure of how well is the

Johnson distribution reflecting the behavior of returns.

Hence, we first consider the empirical distribution associated to each HF index and we

compute the value of Ω for different values of the parameter L around zero. In Table 5

we show these results obtained together with the corresponding Sharpe ratios as provided

by CSFB Tremont.
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Table 5: Omega and Sharpe ratios of empirical distribution

Sharpe* Omega(L)

L=-0.002 L=-0.001 L=0 L=0.001 L=0.002

CSFB Tremont 0.071 1.977 1.796 1.610 1.610 1.610
Convertible Arbitrage 1.24 2.794 2.393 2.052 1.694 1.455
Ded Short Bias -0.22 1.015 0.877 0.877 0.811 0.761
Emerging Markets 0.02 1.195 1.195 1.001 0.935 0.935
Equity Market Neutral 2.07 6.600 4.948 3.796 3.363 2.140
Event Driven 0.99 2.756 2.310 1.966 1.663 1.403
Fixed Inc Arb 0.57 2.379 2.013 1.515 1.152 0.872
Global Macro 0.78 1.981 1.764 1.657 1.657 1.657
Long/Short 0.62 2.256 1.738 1.738 1.435 1.364
Managed Futures 0.21 1.309 1.221 1.111 1.026 0.911

*Calculated using the rolling 90-day T-bill rate.

We have evaluated Omega near zero in order to be able to compare with the risk

adjusted returns. Figures 7 and 8 show the behavior of the different strategies. It should

be noted the greater steepness of the Event Driven and Fixed Income Arbitrage indices,

which reflects the fact that for these indices, a small increase in the investor’s loss threshold

quickly reduces their Omega.
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Figure 9: Ω(L) for empirical series

If we rank the hedge fund indices according to their Sharpe ratio or to Ω parameter

we find out significant differences precisely in those indices with low skewness and high

16



-0.002 -0.001 0.001 0.002

1.25

1.5

1.75

2

2.25

2.5

2.75

MF

LS

GM

FIA

ED

Figure 10: Ω(L) for empirical series

kurtosis. In Table 6 we compare the rankings obtained from a risk adjusted measure,

from the Sharpe ratio and from the Omega parameter (at a level of L=0.002).

Table 6: Ranking by Sharpe ratios and by Omega (L = 0.002)

Risk adjusted Ranking Sharpe* Ranking Omega**

Equity Market Neutral Equity Market Neutral Equity Market Neutral
Convertible Arbitrage Convertible Arbitrage Global Macro
Event Driven Event Driven CSFB Tremont
Fixed Inc Arb Global Macro Convertible Arbitrage
CSFB Tremont CSFB Tremont Event Driven
Global Macro Long/Short Long/Short
Long/Short Fixed Inc Arb Emerging Markets
Managed Futures Managed Futures Managed Futures
Emerging Markets Emerging Markets Fixed Inc Arb
Ded Short Bias Ded Short Bias Ded Short Bias

*Calculated with the rolling 3-month T-bill. ** for L = 0.002.

The results agree with what we expected: the very low skewness and high kurtosis

of the Event Driven and Fixed Income Arbitrage indices are penalized under the Omega

criterion at any return level which is slightly positive. At L = 0.002 they both descend

more than one position. It is also clear that as L increases, both indices will descend
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even more. This confirms that their Sharpe ratio, which ignores higher moments, was

overestimating the performance of these indices. It is also significant that Equity Market

Neutral index, for which we can assume the normality hypothesis, appears in a stable first

position both under the Sharpe ratio and the Omega criterion.

We will now calculate Omega for each of the Johnson’s distributions we have associ-

ated to each of the indices. The cumulative distribution function of the corresponding

SU and SB distributions and the integrals needed in (19) were obtained by numerical

approximation in Mathematica. We obtain the following values:

Table 7: Omega for the Johnson distributions

Omega(L)

L=-0.002 L=0 L=0.002

CSFB Tremont 3.03 2.4687 2.011
Convertible Arbitrage 5.7828 4.2835 3.1259
Ded Short Bias 1.2048 1.09 0.988
Emerging Markets 1.45042 1.3131 1.19528
Equity Market Neutral 21.9404 11.8382 6.538
Event Driven 4.18 3.34 2.62
Fixed Inc Arb 4.49 3.19 2.19
Global Macro 2.683 2.32734 2.017
Long/Short 2.77 2.1948 2.065
Managed Futures 1.8318 1.5806 1.363

We can now compare the ranking obtained with these values. In Table 8 we also rank

the indices according to the steepness of their omega around zero. Recall that the more

steepness, the less risky.
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Table 8: Ω-Ranking using Johnson distributions

Ranking omega ∆Ω/∆L

L = 0 L = 0.002

Equity Market Neutral Equity Market Neutral Equity Market Neutral
Convertible Arbitrage Convertible Arbitrage Convertible Arbitrage
Event Driven Event Driven Fixed Income Arb.
Fixed Income Arb Fixed Income Arb. Event Driven
CSFB Tremont Long/Short CSFB/Tremont
Global Macro Global Macro Global Macro
Long Short CSFB/Tremont Managed Futures
Managed Futures Managed Futures Long/Short
Emerging Markets Emerging Markets Emerging Markets
Ded Short Bias Ded Short Bias Ded Short Bias

We can see that the ranking is similar to the one given by the simple risk/return

ratio. In fact, at L = 0 both rankings coincide while at L = 0.002 there are still 8

coincidences which include in particular the Event Driven and Fixed Income Arbitrage

indices. This can be seen more clearly if we compare the Omega function obtained from the

discrete observations with the one obtained from the Johnson distribution. Around L = 0,

the Johnson distributions appear to have higher Omega values than the corresponding

empirical distributions.

6. Conclusions.

We have seen that although Johnson distributions are a useful tool to model hedge fund

non-normal distributions of returns, there are still some considerations which should be

taken into account. First, on the practical side, the parameter estimation depends heavily

on numerical approximations and thus is more prone to error. Moreover, as we approach

the lognormal line in the (
√

β1, β2) plane there may be some instability on the choice of

distribution and the estimation of the γ and δ parameters. On the other hand, under the

Omega criterion it appears that, although the Johnson approximation carries information

19



about skewness and kurtosis, it still fails to reflect entirely higher moment effects. It

also fails to detect entirely the the left tail risk, specially in the cases where we have a

“short option” behavior. In these cases, the left tail of the associated Johnson distribution

underestimates the probability of losses. The isolated but large negative returns seem to

be too rare to make any difference on the Johnson parameters, and hence they remain

undetected.
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