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Abstract

This study examines the relation between futures volatility and contract’s maturity. The

negative covariance hypothesis predicts that the negative covariance between changes

in carry costs and changes in spot prices is a key factor for observing the ”maturity

effect” (volatility increases as maturity approaches). In this framework, our study provides

additional criteria to explain why, even when the negative covariance condition holds, an

inverse maturity effect will be more likely to be observed. Moreover, when applied to the

case of short term interest rate futures, it shows how changes in the futures volatility are

linked with the term structure dynamics. To provide empirical evidence supporting our

results, we analyze the behavior of the 3-month Eurodollar, Euribor, Short Sterling, and

Euroyen futures contracts.



1 Introduction.

Understanding the dynamics of futures price volatility is important for several reasons.

For example, clearinghouses set margin requirements on the basis of futures price volatility,

so matching margins with volatility in an efficient way should be the aim of an adequate

margin requirement policy. On the other hand, it is also important for hedging strategies,

since such strategies seek to minimize price variability. Finally, volatility is a critical

factor for pricing options and other derivatives.

This study investigates the relation between futures price volatility and the futures

contract’s time to expiration. Samuelson (1965) postulated that the volatility of futures

prices should increase as the contract approaches expiration, a behavior which became

known as the ”maturity effect” or the Samuelson hypothesis. Numerous studies have

investigated the Samuelson hypothesis empirically and, although the results are mixed,

the hypothesis has been often supported in agricultural futures, but not in precious met-

als, energy or financial futures. Bessembinder, Coughenour, Seguin and Monroe Smoller

(1996) attempted to provide an economic analysis that predicted why the maturity ef-

fect should be supported in some markets but not in others. Their hypothesis (negative

covariance hypothesis, hereafter) states that the maturity effect is more likely to hold in

markets that exhibit negative covariance between changes in spot prices and changes in

net carry costs. Since such negative covariation will be more likely to hold for real assets

but not for financial assets, they predict that the maturity effect is unlikely to hold in

financial futures markets. The studies of Bessembinder et al. (1996) or Duong and Kalev

(2008a), have provided empirical support to the negative covariance hypothesis, confirm-

ing that the negative covariance condition is a key factor for the maturity effect to hold.

However, the results of Daal, Farhat and Wei (2006) provide weak evidence in favor of

this hypothesis.

On the other hand, some studies have produced examples of financial futures present-

ing a significant inverse maturity effect (volatility decreasing as maturity approaches). In

particular, this has been the case of the Nikkei index futures (Chen, Duan and Hung,



1999), the CME Eurodollar (Duong and Kalev, 2008a,b), and other short term interest

rate futures (Daal, Farhat and Wei , 2006). Moreover, from the results of Daal, Farhat

and Wei (2006), it follows that in many cases both the inverse maturity effect and the

negative covariance condition hold at the same time. To the best of our knowledge, no

explanation of this behavior has been given, despite the fact that, for negative covari-

ance to have any predictive power at all, it is important to know how frequently negative

covariance may hold when the inverse maturity effect has been observed.

The aim of this study is to reexamine the negative covariance hypothesis with the

purpose of identifying additional information which may help to predict when, even under

negative covariance, the inverse maturity effect would be more likely to hold. In particular,

the study will focus on the the case of short-term interest rate (STIR’s) futures and

examine the link between futures volatility and the dynamics of the term structure.

To empirically test our results we will consider the four most actively traded STIR

contracts: the 3-month Eurodollar futures contracts traded in the Chicago Mercantile

Exchange (CME), the 3-month Euribor and the 3-month Short Sterling futures con-

tracts, both traded in the London International Financial Futures and Options Exchange

(LIFFE), and the Euroyen futures traded on the Tokio Financial Exchange (TFX).

Relative to the previous literature, the main contribution of this study is to identify

the additional criteria needed to explain why, even when the negative covariance condi-

tion holds, the inverse maturity effect will be more likely to be observed. On the other

hand, by focusing on the the particularities of interest rate futures, the analysis shows the

relation between maturity effects and the dynamics of the term structure. More precisely,

it explicitly provides a link between the maturity effect and the ratio between the spot

volatility and the volatility at other points of the yield curve. Since this ratio changes

depending on the behavior of the yield curve, the analysis explains why the same contract

can show different volatility-to-maturity patterns when observed at different points in

time. Finally, to empirically support the theoretical analysis, the study considers some

futures contracts for which no studies of the presence of maturity effects have been pre-
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viously reported.

Our findings show that, consistently with previous results, there is little evidence of

maturity effects in most of the contracts. On the contrary, a significant inverse maturity

effect prevails. However, in contracts maturing in 2008 and 2009, when the financial

crisis was at its peak, this situation changed and the maturity effect was present in the

Euribor, Eurodollar and Short Sterling contracts. With respect to the negative covariance

hypothesis, almost all contracts in the sample exhibit negative covariance between changes

in spot prices and changes in net carry costs. In particular, whenever the maturity

effect is present, the negative covariance condition holds, as predicted by the negative

covariance hypothesis. However, the negative covariance condition also holds when there

is a significant inverse maturity effect, confirming that negative covariance is a poor

predictor of when the maturity effect or its inverse will be observed. The results obtained

provide support to the predicted relation between spot volatility and maturity effect. In

particular, the coincidence between the presence of the maturity effect and an increase

in the volatility of spot rates observed during the recent financial crisis is consistent with

our analysis.

The rest of the article is organized as follows. The next section briefly reviews the

existing literature. Section 3 describes the data and the methodology employed. Section

4 reports and discusses the results obtained, and concluding remarks are given in the last

section.

2 Previous studies

The dynamics of futures price volatility has been studied in the literature from very

different perspectives. Specifically, the relationship between the futures price volatility

and time to maturity was first modeled by Samuelson (1965), who predicted that futures

volatility should increase when contracts approach expiration. This relation is commonly

referred to as the Samuelson hypothesis or the maturity effect. The intuition behind this

prediction is that when there is a long time to the maturity date, little is known about the
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future spot price for the underlying. Therefore, futures prices react weakly to the arrival

of new information (e.g. commodities supply and demand) since our view of the future

will not change much with it. As time passes and the contract approaches maturity, the

futures price is forced to converge to the spot price, so it tends to respond more strongly

to new information.

The example used by Samuelson to present the hypothesis relies on the assumptions

that futures price equals the expectation of the delivery date spot price, and that spot

prices follow a stationary, first-order autoregressive process. However, Rutledge (1976)

argued that alternative specifications of the generation of spot prices are equally plausible

and may lead to predict that futures price variation decreases as maturity approaches (an

“inverse” maturity effect). In response to this, Samuelson (1976) provides arguments on

why volatility can momentarily reverse its direction in a general increasing pattern of

price variability and obtains a weaker result: if delivery is sufficiently distant then the

variance of the futures prices will necessary be less than the variance when contracts are

near to maturity.

Anderson and Danthine (1983) contributed to the theoretical debate proposing that

the increase or decrease of futures price volatility towards expiration depends on the pat-

tern of information flow into the market. Their hypothesis, named the state variable

hypothesis, establishes that the variability of futures prices is systematically higher in

those periods when relatively large amounts of supply and demand uncertainty are re-

solved, i.e. during periods in which the resolution of uncertainty is high. Within this

context, the Samuelson hypothesis would be a special case in which the resolution of

uncertainty is systematically greater near contract maturity.

Bessembinder et al. (1996) introduced a different framework to explain the relation

between volatility and time to maturity. According to their model, neither the clustering

of information flow near delivery dates nor the assumption that each futures price is an

unbiased forecast of the delivery date spot price is a necessary condition for the success

of the hypothesis. Instead, the maturity effect requires negative covariation between
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spot returns and changes in futures cost of carry (the futures ”term slope”). Since such

negative covariation will be observed primarily in markets where there are convenience

yields that display inter-temporal variation, they predict that the Samuelson hypothesis

is unlikely to hold in financial futures markets. They test their predictions using data

from agricultural, crude oil, metals and financial futures, and they obtain strong empirical

supporting evidence for their model.

Empirical research came along with theoretical models, applying different methods to

investigate the existence of the maturity effect and considering a wide range of futures

contracts and markets. Results are mixed, but the most frequent outcome is that the

maturity effect is strongly present in agricultural futures but it is statistical insignificant,

or non-existent at all in metals and financial futures. See, for example, Milonas (1986),

Grammatikos and Saunders (1986), Barnhill, Jordan and Seale (1987), Khoury and

Yourougou (1993), Galloway and Kolb (1996), Hennessy and Wahl (1996), Han, Kling

and Sell (1999), Chen, Duan and Hung (1999), Moosa and Bollen (2001), or Aragó and

Fernández (2002). On the other hand, some results have also found evidence supporting

the state variable hypothesis (Barnhill, Jordan and Seale, 1987), while others conclude

that seasonality may be more important than maturity in explaining the patterns of the

variances of futures price changes (Anderson, 1985).

Even if the research has mainly focused in detecting the presence of the maturity effect,

the studies have also produced cases of volatility decreasing as the contract is closer to

maturity. This inverse effect seems to be an exclusive behavior of financial futures. For

example, Chen, Duan and Hung (1999) found that, contrary to Samuelson hypothesis,

volatility of the Nikkei Index futures contracts decreased as maturity approached. More

recently, Daal, Farhat and Wei (2006) examine 6,805 contracts from 61 commodities

during the 80s and 90s, testing for the presence of maturity effect and for the negative

covariance hypothesis. Their results show strong maturity effects in agricultural futures,

but they also show significant inverse maturity effects in short term interest rate futures

(Eurodollar and 1-month Libor) and other financial futures. Unfortunately, they test the
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negative covariance hypothesis only for currency futures as representatives of financial

futures, so it is difficult to assess the relation between inverse maturity and negative

covariance. Finally, Duong and Kalev (2008a,b), using intraday data from different futures

markets, find strong support for the Samuelson hypothesis in agricultural futures and show

that the hypothesis does not hold for other futures contracts. In particular, in Duong and

Kalev (2008a) a significant inverse maturity effect is observed in three of the seven financial

futures included in the sample (Eurodollar, E-mini S&P500 and E-mini Nasdaq), while in

Duong and Kalev (2008b) the inverse effect is again observed in the only financial futures

included in the sample (Eurodollar). By estimating the sign of the covariance between

spot returns and net carry costs, Duong and Kalev (2008a) provide supporting evidence

that the negative covariance hypothesis is the key factor for the empirical support of the

Samuelson hypothesis.

3 Maturity effect in interest rate futures

3.1 The negative covariance hypothesis

Let Ft denote the price of the futures contract and let St be the price of the underlying

asset at time t. If Et[−] denotes the conditional expectation at time t, then the unexpected

rate of spot price appreciation vt is defined as vt ≡ ln(St+1) − ln(Et[St+1]). Following

Bessembinder et al. (1996), in the framework of the cost-of-carry model with variable cost

of carry, the variance of futures price changes can be expressed as

Var(∆Ft) = m2
t Var(∆ct) + 2mtCov(vt, ∆ct) + Var(vt) (1)

where, for each contract, mt is the time left to maturity at time t, vτ is the unexpected

rate of spot price appreciation, Var and Cov denote variance and covariance respectively,

and ∆ct = ct − ct−1 is the change in the net carry cost

ct =
ln(Ft)− ln(St)

mt

. (2)
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Considering Equation (1), Bessembinder et al. (1996) argue that the maturity effect cannot

rely on time variation of Var(vt), because this would imply spot variance increasing every

time a contract expiration date approaches. Hence, they conclude that the Samuelson

hypothesis is more likely to be supported when Cov(vτ , ∆cτ ) < 0 (negative covariance

condition), since only when this condition holds it is reasonable to expect that the variance

Var(∆Ft) may increase as mt decreases.

3.2 Additional conditions

Recent studies like those of Duong and Kalev (2008a,b) have found that for those assets

where maturity effects were observed the negative covariance condition holds, providing

supporting evidence for the negative covariance hypothesis. However, from the results

reported in Daal, Farhat and Wei (2006) and also from the results obtained in this study,

it follows that the negative covariance hypothesis may equally hold when the inverse

maturity effect is predominant. This implies that, although there is a high probability

of observing negative covariance, conditional on the presence of the maturity effect (as

implied by the negative covariance hypothesis), the probability of observing negative

covariance conditional on the presence of an inverse maturity effect may also be high.

This would mean that negative covariance is a poor predictor of when the maturity effect

or its inverse will be observed. Thus, to increase the discriminatory power of the model,

additional conditions should be introduced.

Assuming the negative covariance condition and considering Var(∆Ft) as a function

of mt, Equation (1) represents a parabola that attains its minimum value

Var(∆Ft)min = Var(vt)− Cov(vt, ∆ct)
2

Var(∆ct)
(3)

at the point

m̂ ≡ −Cov(vt, ∆ct)

Var(∆ct)
> 0. (4)

If we consider the distance

D ≡ Var(vt)− Var(∆Ft)min (5)
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then the slope −D/m̂ = Cov(vt, ∆ct) is a measure of the rate of growth of Var(∆Ft) as

maturity approaches. In principle, the larger the negative value of this ratio, the stronger

the maturity effect will be. However, m̂ is also a key parameter in predicting whether

the maturity effect or its inverse are more likely to be observed. It may be interpreted as

the point in time when the relation between futures price volatility and time to maturity

changes sign, with the volatility beginning to increase as maturity approaches. Hence,

even when the slope −D/m̂ is (negatively) large, if m̂ is small then the inverse effect will

be more likely to hold.

3.3 Maturity effect and term structure dynamics

We now explore the relation between m̂ and spot volatility. Let ρvc be the correlation

coefficient between vτ and ∆ct and denote by σ(vt) and σ(∆ct) the corresponding standard

deviations. Then

m̂ = −ρvc
σ(vt)

σ(∆ct)
(6)

Hence, having a large m̂ will depend on having a spot volatility many times larger than

the cost-of-carry volatility. This highlights some of the particularities of interest rate

futures when considering maturity effect. In the case of commodities, for example, where

the negative covariance condition usually holds, the cost-of-carry volatility tends to be

of smaller magnitude, or even negligible, compared to the volatility of the underlying.

As a consequence, m̂ can be large enough to allow the maturity effect to be observed.

However, in the case of interest rate futures, both volatilities in Equation (6) are linked

by the dynamics of the term structure, and they may be of similar magnitude. As a

consequence, even when there is evidence of large negative covariance, the values of m̂

can be small enough so that the inverse maturity effect will be more likely to be observed.

8



4 Data and Methodology

To empirically test the previous arguments, the study considers four of the most traded

short-term interest rate future contracts worldwide: 1) The 3-month Eurodollar futures

contract, introduced by the Chicago Mercantile Exchange (CME) and currently the most

actively traded interest rate futures contract in the world, 2) the 3-month Sterling (Short

Sterling) and 3) the 3-month Euribor, which are the most liquid Sterling and Euro STIR

futures contracts worldwide, and 4) The 3-month Euroyen futures contract traded in the

Tokio Financial Exchange (TFX).

The four contracts have similar characteristics. All of them are cash settled to 100

minus their respective reference rate. In the case of the Eurodollar, the reference rate is

the 3-month U.S. Dollar Libor published by the British Bankers Association (BBA). For

the Euribor contract it is the European Bankers Federation Euribor Offered Rate (EBF

Euribor) for 3-month Euro deposits. For the Sterling deposits it is the British Bankers

Association London Interbank Offered Rate (BBA Libor), and for the Euroyen it is the

3-month Tokio Interbank Offered Rate (Tibor) determined by the Japanese Banking As-

sociation (JBA). Additionally, all four contracts have quarterly maturity months (March,

June, September and December), extending for long periods (10 years in the case of Eu-

rodollar). And finally, all contracts are traded electronically. The particular features of

each contract are summarized in Table I.

For each of the four STIR futures contracts, the study considers daily settlement prices,

daily highs and lows, and daily trading volume for the 30 contracts expiring quarterly

between March 2002 and June 2009. These data, together with the spot 3-month USD

Libor, Libor, Tibor and Euribor rates were obtained from Datastream. Since, for the

majority of contracts, trading volume is thin in periods of more than 24 months before

maturity, the sample used for each futures contract includes only the 24 months preceding

its expiration. On the other hand, to avoid abnormal price variability, we will follow the

usual practice of excluding the expiration month from the analysis. The result is a data

set of 120 futures contracts with 500 daily settlement prices each.
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The study considers the logarithmic returns

∆Ft = ln(Ft/Ft−1) (7)

where Ft denotes the futures settlement price on calendar day t.

Spot annual rates yt will be converted to notional prices St as

St = 100− yt (8)

where yt is the corresponding 3-month reference rate at time t.

Tables II and III present summary statistics for the price changes ∆Ft. All contracts

are leptokurtic and in all cases the Bera-Jarque statistic rejects the hypothesis of normal-

ity. There are clearly-defined periods where negative or positive skewness prevail. The

Ljung-Box Q-statistic for autocorrelation (with 20 lags) shows little evidence of autocorre-

lation in the series. The tables also include the results for the Engle (1982) LM-test for an

autoregressive conditional heteroscedasticity (ARCH) effect. With a 1% confidence level,

only all contracts maturing before September 04 or after March 2008 show significant

evidence of ARCH effects.

For each futures series there is a corresponding series of contemporaneous spot rates

and, applying Equation (8), a series of contemporaneous notional spot prices.

As in Rutledge (1976) or Bessembinder et al. (1996), daily variability is measured

using the absolute value of the logarithmic rate changes. That is,

σ(F )t = | ln(Ft/Ft−1)| (9)

for the case of futures contracts.1 Analogous expressions hold for spot changes volatility

σ(S)t.

1 The analysis was also performed using as a measure of daily volatility the realized daily range

σ(F )t = ln(Ht)− ln(Lt)

where Ht and Lt are the high and low prices on day t. The results obtained were qualitatively the same.
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5 Results and Discussion

5.1 Estimates of time-to-maturity effects on volatility

The first step in the analysis consists, for each individual contract, of a linear regression

of the contract’s daily volatility σ(F )t on the number of days mt remaining to expiration,

as specified by the model

σ(F )t = α + βmt + ut, (10)

where ut are the disturbances. If the maturity effect is present, the coefficient β should

be negative and statistically significant.2

Table IV reports results of the above regressions (10).3 In the case of the Eurodollar

futures, only four of the contracts expiring in 2008 and 2009 show time to maturity

coefficients which are negative and significantly different from zero, as predicted by the

Samuelson hypothesis. On the other hand, from 2003 to the end of 2007, all the beta

coefficients are positive and significant, providing evidence of an inverse maturity effect,

i.e. volatility decreases as maturity approaches.

In the case of Euribor and Short Sterling, the similarities with the Eurodollar are

remarkable. From 2003 to the end of 2007, both contracts show positive and signifi-

cant beta coefficients, providing evidence of a strong inverse maturity effect. But in few

individual contracts, most of them maturing in 2008 and 2009, there is evidence of the

maturity effect. Finally, the Euroyen preents a different pattern, with almost all contracts

showing positive and significant time to maturity coefficients through all the period under

consideration and a one contract (Dec05) showing evidence of the maturity effect.

2A GARCH(1,1) model with time-to-maturity as an exogenous variable was also tested for each

contract. However, in agreement with the results of the LM-test reported in Tables II and III, only

in a few cases did the model appear to be appropriate.

3All the regression estimates in this study were obtained using using (Newey and West, 1987) het-

eroscedasticity consistent estimation.
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5.2 Effect of controlling for variation in information flow

To test the effects of information flow, the above analysis was also performed including

spot volatility as a regressor, following the procedure used in Bessembinder et al. (1996).

If information flow is not the main explanation of the Samuelson hypothesis, the coefficient

on the days to maturity variable should remain negative and significant.

Tables V and VI reports results of individual regressions of the daily volatility esti-

mates on the days to maturity and on spot volatility. Compared with the results above,

the inclusion of the spot price volatility has little effect on the estimates and significance

of the coefficients of the time to maturity variable. Therefore, changes in the rate of

information flow are not the main determinant for the empirical support of the maturity

effect hypothesis, contrary to the suggestion of Anderson and Danthine (1983). Further-

more, the spot volatility is only statistically significant in very few cases, showing that,

in general, it is not a relevant factor in explaining futures volatility.

5.3 Robustness tests

For the robustness of the results, it is convenient to examine the potential effects of

volume trading on the relation between futures price volatility and time to maturity. In

other words, the question remains of whether the finding of a decline in futures price

volatility close to the expiration of the futures contract is not just reflecting the decline in

trading volume. At first sight this should not be the case, since the last four weeks of the

contract have been excluded from the analysis and also because volume patterns differ

greatly between contracts with different expiration dates and also between the different

contracts considered.

To test for the effects of volume we run the regression (10) including the daily trading

volume for each of the contracts as control variable. The results, not included here but

available from the authors, show that although volume is significant in many contracts in

very few cases where an inverse maturity effect was previously observed the effect changes

after including the volume variable. Thus, we conclude that the decline in futures price
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volatility as maturity approaches is not driven by the level of trading volume.

5.4 Negative covariance

We now examine the negative covariance hypothesis of Bessembinder et al. (1996),

which states that the maturity effect is more likely to be supported in markets that

exhibit negative covariance between spot price changes and changes in net carry costs.

Following Bessembinder, Coughenour, Seguin and Monroe Smoller (1995) and Duong

and Kalev (2008a), the negative covariance condition is tested for each contract by per-

forming the following regressions

∆ct = ω0 + ω1∆St + εt (11)

where ∆St are the changes in the spot log-prices. The results on Table VII show that

the ω1 coefficients are negative always and significant for almost all of the contracts. In

other words, the negative covariance condition (ω1 < 0) in itself has low power to predict

if the maturity effect or its inverse will be observed. This confirms that additional criteria

are needed to predict when the maturity effect or its inverse are more likely to hold. To

empirically support this argument, Figures 1 and 2 show the estimated values of m̂ and

of the slopes −D/m̂ for each of the contracts.4 Since we have assumed that mt ≥ 20

(see Section 3.4), then we should expect that when m̂ is not sufficiently greater than 20,

the inverse maturity effect should prevail. A comparison with the results summarized in

Table IV confirms that low values of m̂ coincide with the dilution of the maturity effect or

with the prevalence of the inverse effect. Even in those cases which exhibit large negative

covariance (for example, in Dec 02 contract), there may be no evidence of a significant

maturity effect, coinciding with a relatively low value of m̂ (m̂ = 18 in the example).

The above analysis suggests that the sharp increase in the spot volatility observed from

September 2007 onwards in the Libor, U.S. Dollar Libor, and Euribor rates (see Figure

4The values of Cov(vτ , ∆cτ ) are estimated using the relation ∆Sτ = cτ +π +vτ , where π is a constant

representing a risk premium (see Bessembinder et al. (1996)).
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3) could be a key factor explaining the appearance of the maturity effect in 2008 and

2009 in the Eurodollar, Euribor and Short Sterling contracts. Indeed, this is supported

by the fact that the Euroyen future is the only one of these contracts in which there is no

maturity effect, coinciding with no significant increase in volatility in its reference rate.

6 Conclusion

This study examines the dynamics of volatility of interest rate futures as maturity

approaches in the framework of the negative covariance hypothesis of Bessembinder et al.

(1996). Based on the premises of this hypothesis, we introduce an additional parameter

that explains why, even when the negative covariance condition holds, the maturity effect

may not be observed or may even be replaced by the inverse effect. The theoretical analysis

predicts that, even if the negative covariance condition holds, the inverse maturity effect

will be more likely to be observed if spot volatility is not sufficiently larger than the cost-

of-carry volatility. Since, in the case of interest rate futures, the cost of carry, the spot

rate and the futures rate are all linked by the term structure, the analysis explicitly links

the maturity effect with the dynamics of the term structure.

The theoretical arguments are tested empirically by considering four short term inter-

est rate future contracts. Results of individual regressions show that the usual maturity

effect, as defined by the Samuelson hypothesis, was present in some Eurodollar, Euribor

and Sterling futures but almost only in 2008 and the first quarter of 2009, coinciding with

the financial crisis. For the rest of the contracts, there is evidence of the inverse effect:

volatility decreases as maturity approaches. These results are robust after controlling for

trading volume and spot volatility.

The empirical evidence shows that, even if the negative covariance condition holds, the

inverse maturity effect will be more likely to be observed if spot volatility is not sufficiently

larger than the cost-of-carry volatility, as predicted by the model. In particular, the

coincidence between the presence of the maturity effect and an increase in the volatility

of spot rates observed during the recent financial crisis is consistent with our analysis.
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Table I: STIR futures contract characteristics

CME Eurodollar NYSE Liffe Euribor Liffe Short Sterling TFX Euroyen

Underlying Eurodollar three Euro three Sterling three Euroyen three

instrument month deposit month deposit month deposit month deposit

Principal USD $ 1,000,000 e1000000 £500,000 U100,000,000

Price quote 100 - rate of interest 100 - rate of interest 100 - rate of interest 100 - rate of interest

1 basis point = $25 e25 £12.50 U2,500

Contract Months 40 quarterly months 24 quarterly months 24 quarterly months 20 quarterly months

available for (Mar, Jun, Sep, Dec) (Mar,Jun, Sep, Dec) (Mar, Jun, Sep, Dec) and 2 (Mar, Jun, Sep, Dec)

trading and 4 nearest serial and 4 nearest serial and 2 nearest serial and 2 serial

expirations expirations expirations expirations

Last trading day Two business days Two business days Third Wednesday of Two business days

prior to the third prior to the third the delivery month prior to the third

Wednesday of the Wednesday of the Wednesday of the

delivery month delivery month delivery month

Final settlement Cash settled to 100 Cash settled to 100 Cash settled to 100 Cash settled to 100

minus BBA three minus EBF three minus BBA Libor minus JBA Tibor

month U.S. Dollar month Euribor for 3-month for 3-month

Libor Sterling deposits Euroyen deposits

Traded Volume 596,974,081 228,487,462 104,572,875 22,372,133

in 2008*

This table summarizes the particular features of the futures contracts under consideration, as specified

by the CME, NYSE Liffe and TFX exchanges.

* According to the Futures Industry Association Annual Volume Survey 2008.
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Figure 1: Covariance and minimal variance points for the Eurodollar and Euribor contracts
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For each contract, points in the continuous line represent the covariance between rates in unexpected

spot price appreciation and changes in net carry costs, Cov(vt, ∆ct), multiplied by 1010. Points in the

dotted line correspond to the points m̂ of minimal variance.
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Figure 2: Covariance and minimal variance points for the Short Sterling and Euroyen contracts
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For each contract, points in the continuous line represent the covariance between rates in unexpected

spot price appreciation and changes in net carry costs, Cov(vt, ∆ct), multiplied by 1010. Points in the

dotted line correspond to the points m̂ of minimal variance.

20



Figure 3: Volatility of daily spot rate changes

US 3M LIBOR

0

0.02
0.04

0.06
0.08

0.1
0.12

0.14
0.16

0.18

2000 2001 2002 2003 2003 2004 2005 2006 2007 2008

3M EURIBOR

0

0.02

0.04

0.06

0.08

0.1

2000 2001 2002 2003 2003 2004 2005 2006 2007 2008

£  3M LIBOR

0

0.05

0.1

0.15

0.2

0.25

2000 2001 2002 2003 2003 2004 2005 2006 2007 2008

3M TIBOR

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

2000 2001 2002 2003 2003 2004 2005 2006 2007 2008

For each of the reference spot rates, volatility is measured as the absolute value of spot rate daily

logarithmic differences from January 2000 to June 2009
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Table V: Regression of daily volatility on days to expiration and spot volatility

Contract Eurodollar Euribor

α× 103 β × 104 γ AdjR2 α× 103 β × 104 γ AdjR2

Mar02 0.47∗∗ 0.0002 0.1251∗ 0.006 0.33∗∗ 0.0009 0.0779 0.002

Jun02 0.51∗∗ −0.0004 0.1422∗ 0.008 0.34∗∗ 0.0003 0.0843 0.001

Sep02 0.52∗∗ 0.0007 0.1361 0.006 0.36∗∗ 0.0001 0.0394 -0.003

Dec02 0.46∗∗ 0.0055∗ 0.0566 0.018 0.41∗∗ −0.0002 −0.0328 -0.003

Mar03 0.38∗∗ 0.0089∗∗ −0.0179 0.040 0.35∗∗ 0.0021 −0.0709 0.005

Jun03 0.31∗∗ 0.0111∗∗ −0.0421 0.063 0.30∗∗ 0.0042∗ −0.1154∗ 0.027

Sep03 0.20∗∗ 0.0142∗∗ −0.0080 0.111 0.21∗∗ 0.0071∗∗ −0.1136∗ 0.077

Dec03 0.15∗∗ 0.0139∗∗ 0.0212 0.128 0.19∗∗ 0.0062∗∗ 0.0206 0.070

Mar04 0.16∗∗ 0.0132∗∗ 0.0798 0.134 0.23∗∗ 0.0050∗∗ −0.0137 0.046

Jun04 0.16∗∗ 0.0145∗∗ 0.0316 0.144 0.25∗∗ 0.0055∗∗ −0.1798 0.045

Sep04 0.27∗∗ 0.0104∗∗ 0.0861 0.071 0.20∗∗ 0.0072∗∗ −0.3331∗ 0.068

Dec04 0.26∗∗ 0.0121∗∗ −0.0060 0.081 0.15∗∗ 0.0091∗∗ −0.4862 0.095

Mar05 0.17∗∗ 0.0157∗∗ −0.1740 0.132 0.08∗∗ 0.0120∗∗ −0.7939∗ 0.172

Jun05 0.05 0.0187∗∗ 0.0928 0.176 0.05 0.0119∗∗ −1.4750∗∗ 0.223

Sep05 0.12∗∗ 0.0140∗∗ −0.1789 0.139 0.06∗∗ 0.0097∗∗ −1.3549∗∗ 0.210

Dec05 0.17∗∗ 0.0108∗∗ −0.1031 0.093 0.07∗∗ 0.0083∗∗ −0.7928∗ 0.166

Mar06 0.17∗∗ 0.0104∗∗ −0.1374 0.101 0.08∗∗ 0.0075∗∗ −0.6745∗ 0.159

Jun06 0.22∗∗ 0.0067∗∗ −0.1278 0.059 0.11∗∗ 0.0059∗∗ −0.2829∗∗ 0.101

Sep06 0.26∗∗ 0.0041∗∗ −0.0781 0.029 0.12∗∗ 0.0051∗∗ −0.2614∗ 0.089

Dec06 0.18∗∗ 0.0056∗∗ 0.1552 0.066 0.12∗∗ 0.0047∗∗ −0.2397 0.079

Mar07 0.14∗∗ 0.0070∗∗ 0.1659 0.108 0.12∗∗ 0.0047∗∗ −0.2958∗ 0.080

Jun07 0.18∗∗ 0.0057∗∗ −0.0102 0.063 0.10∗∗ 0.0052∗∗ −0.2653 0.103

Sep07 0.22∗∗ 0.0039∗∗ 0.2140∗ 0.035 0.09∗∗ 0.0051∗∗ −0.3127∗∗ 0.109

Dec07 0.39∗∗ −0.0005 0.0994 0.000 0.19∗∗ 0.0022∗ −0.2888 0.034

Mar08 0.51∗∗ −0.0030∗ 0.2275 0.040 0.28∗∗ 0.0003 −0.1578 0.005

Jun08 0.59∗∗ −0.0044∗ 0.1954∗ 0.041 0.40∗∗ −0.0029∗ −0.0951 0.018

Sep08 0.54∗∗ −0.0016 0.2530∗∗ 0.029 0.43∗∗ −0.0031 −0.1538 0.016

Dec08 0.89∗∗ −0.0105∗∗ 0.2004 0.112 0.64∗∗ −0.0080∗∗ −0.0747 0.066

Mar09 0.84∗∗ −0.0056∗ 0.1837∗ 0.039 0.72∗∗ −0.0079∗∗ −0.2420 0.045

Jun09 0.65∗∗ 0.0026 0.1820∗ 0.015 0.56∗∗ −0.0011 −0.1420 0.001

The table reports the estimates of the regressions σ(F )t = α + βmt + γ σ(S)t + uτ , where mt rep-

resents days to maturity and σ(S)τ is the spot volatility. AdjR2 is the adjusted R2. There are 500

observations (expiration month is excluded). The results are obtained using the Newey and West (1987)

heteroscedasticity-consistent covariance procedure. * and ** indicate significance at 5% and 1% respec-

tively.
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Table VI: Regression of daily volatility on days to expiration and spot volatility

Contract Short Sterling Euroyen

α× 103 β × 104 γ AdjR2 α× 103 β × 104 γ AdjR2

Mar02 0.49 −0.0031 0.045 0.010 0.00 0.0055∗∗ −0.0384 0.011

Jun02 0.56∗ −0.0046∗ 0.0122 0.020 −0.01 0.0035∗∗ 0.0941 0.154

Sep02 0.55 −0.0027 −0.015 0.004 −0.09 0.0075 −0.0356 0.025

Dec02 0.47 0.0011 −0.0244 -0.003 0.00 0.0024∗∗ 0.2627∗∗ 0.181

Mar03 0.36∗∗ 0.0051∗∗ −0.0468 0.020 0.01 0.0016∗∗ 0.4418∗∗ 0.141

Jun03 0.30∗∗ 0.0073∗∗ −0.0282 0.046 0.01 0.0012∗∗ 0.1875 0.078

Sep03 0.29∗∗ 0.0067∗∗ −0.0028 0.045 0.01∗ 0.0010∗∗ 0.3886 0.037

Dec03 0.32∗∗ 0.0042∗∗ 0.1045 0.021 −0.01 0.0024∗ 0.4246 0.039

Mar04 0.33∗ 0.0035∗ −0.0226 0.011 0.04∗∗ 0.0000 0.1554 -0.002

Jun04 0.29∗∗ 0.0057∗∗ −0.1094 0.032 0.03∗∗ 0.0004 0.1441 0.006

Sep04 0.27∗∗ 0.0060∗∗ −0.1614 0.035 0.04∗∗ 0.0005 0.1685 0.003

Dec04 0.20∗∗ 0.0084∗∗ −0.1329 0.073 0.04∗∗ 0.0011 0.1489 0.013

Mar05 0.14∗∗ 0.0095∗∗ −0.1665 0.121 0.02 0.0023∗∗ 0.3351∗ 0.058

Jun05 0.14∗∗ 0.0087∗∗ −0.2099 0.119 −0.02 0.0047∗∗ 0.0301 0.163

Sep05 0.18∗∗ 0.0064∗∗ 0.2331 0.063 −0.02 0.0041∗∗ −0.0416 0.186

Dec05 0.18∗∗ 0.0053∗∗ 0.4363 0.055 −0.02 0.0038∗∗ −0.0626 0.204

Mar06 0.19∗∗ 0.0043∗∗ 0.4664∗ 0.046 −0.02 0.0039∗∗ 0.0491 0.230

Jun06 0.17∗∗ 0.0047∗∗ 0.5377∗ 0.078 0.03∗ 0.0021∗∗ 0.5416 0.091

Sep06 0.21∗∗ 0.0028∗∗ 0.1593 0.028 0.10∗∗ −0.0004 0.2868 0.009

Dec06 0.20∗∗ 0.0026∗∗ 0.2077 0.034 0.15∗∗ −0.0012∗ 0.3978∗ 0.028

Mar07 0.20∗∗ 0.0026∗∗ 0.1254 0.028 0.16∗∗ −0.0006 0.3988∗ 0.009

Jun07 0.19∗∗ 0.0029∗∗ −0.007 0.025 0.11∗∗ 0.0018∗∗ 0.1386 0.020

Sep07 0.20∗ 0.0022∗ −0.229∗ 0.036 0.08∗∗ 0.0032∗∗ 0.1786 0.063

Dec07 0.35 −0.0017 0.1026 0.013 0.06∗∗ 0.004∗∗ 0.1773 0.100

Mar08 0.38 −0.0020 0.0268 0.008 0.06∗∗ 0.0041∗∗ 0.1115 0.115

Jun08 0.50∗∗ −0.0049∗∗ −0.0062 0.048 0.08∗∗ 0.0026∗∗ 0.2022 0.059

Sep08 0.61∗∗ −0.0070∗∗ −0.0530 0.065 0.10∗∗ 0.0019∗∗ 0.1201 0.031

Dec08 1.01∗∗ −0.0167∗∗ 0.0273 0.171 0.17∗∗ 0.0000 0.0606 -0.004

Mar09 0.96∗∗ −0.0124∗∗ −0.0515 0.080 0.21∗∗ −0.0004 0.1599 -0.001

Jun09 0.67 −0.0017 −0.0168 -0.002 0.14∗∗ 0.0023∗ 0.1144 0.017

The table reports the estimates of the regressions σ(F )t = α + βmt + γ σ(S)t + ut, where mt rep-

resents days to maturity and σ(S)t is the spot volatility. AdjR2 is the adjusted R2. There are 500

observations (expiration month is excluded). The results are obtained using the Newey and West (1987)

heteroscedasticity-consistent covariance procedure. * and ** indicate significance at 5% and 1% respec-

tively.
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