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Abstract

In this paper we reexamine some results recently appeared in the
empirical auction literature: we show that, when only transaction
prices are observed (Athey-Haile,(2002)), the distribution of private
valuations is irregularly identified, in the sense that its estimate does
not converge at the usual parametric rate. The sample bias produced
by nonparametric estimators will affect all functionals of practical in-
terest. We present here a different approach to estimation, theoret-
ically justified by extreme value theory. Compared to existing ap-
proaches this approximation method has several advantages: it pro-
duces more accurate results, is computationally easy to perform, and
does not require strong assumptions about the unobserved distribu-
tion of bidders’ valuations.

1 Introduction

The analysis of auctions has inspired over the years one of the most
successful marriages between theoretical and econometric models. The-
orists, since the seminal work of Vickrey (1961), have elaborated a rich
framework to map private valuations into bids. Econometricians, in
their attempt to identify and estimate the distribution of these pri-
vate values, have adopted the results from the theory as restrictions
to place on the data (the bids).

†Contact: paolo.morganti@itam.mx. I want to thank Nicola Persico, Joerg Stoye,
Konrad Menzel, Juan José Fernandez, Alex Horenstein, Jorge O. Moreno, Moussa Blimpo,
Francisco Barillas, for precious suggestions, guidance, corrections and support.
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The general approach to nonparametric identification in auction mod-
els relies on this theoretical mapping between the distribution of bid-
ders’ valuations - the object of interest - and the distribution of ob-
served bids - the data. Given the latter, we can obtain the former by
inverting the mapping.
When the econometrician has access to limited data - for instance,
only to the transaction price - it is still possible, under certain condi-
tions (Athey and Haile (2002), Haile and Tamer (2003)) to recover the
object of interest using a statistical mapping, a relationship between
the distribution of any order statistics and the underlying distribution
of the data. The use of such mapping is justified by the observation
that transaction prices are an order statistics of the bids, as explicitly
described by the rules of the auction (for instance, in a second price
auction, the transaction price is equal to the second highest bid).
Given the distribution of any order statistics, it is possible to invert
the statistical mapping to back out the underlying distribution1.
However, as pointed out in Menzel and Morganti (2010), even though
the statistical mapping preserves the consistency of the nonparamet-
ric estimator, the inversion problem is badly behaved. Due to the
particular behavior of the inverted mapping at the extremes of the
support, convergence of the estimated distribution to the true one
fails to reach the standard parametric rate. Moreover, the conver-
gence rate is affected by the number of bidders, N , up to the point
that when the number of bidders diverges, the rate converges to zero
and the magnitude of the sample size becomes irrelevant. In contrast
to models where all the information about existing bids is available
(Guerre, Perrigne, Vuong (2000)), when only transaction prices (or
more generally, subsets of the data) are observable, the nonparamet-
ric estimator of the distribution of the data will converge slowly to
the true one, affecting all successive computations (Menzel, Morganti
(2010)).
Since the econometrician observes just an extreme (or a function of an
extreme) of the parental distribution, the dataset will be unbalanced :
observations on the lower part of the support are undersampled, and
observations on the higher portion of the support are oversampled.
As a consequence, inverting the distribution of the extreme imposes
a downward bias around the left end of the support, and an upward

1We want to stress here the different roles taken by the theoretical mapping and the
statistical mapping mentioned above. While the theoretical mapping links bids to individ-
ual valuations, the statistical mapping concerns the link between transaction prices (order
statistics) and bids. From now on we are going to abstract from the first to focus on the
second. The inversion problem that we are going to refer to is the one that goes from
distribution of transaction prices to distribution of unobserved bids.
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bias on the right end. All the quantiles are pushed to the right, and
all the estimates based on them will suffer from that.
The problem is particularly evident when the number of participants
in an auction grows up to infinity: the distribution of transaction
prices collapses to a degenerate one, with mass point at the upper
extreme of the support. Monte Carlo experiments show that, even
when N is finite and small, the bias remains significative even in the
presence of large samples.
While in principle it is possible to attenuate the problems on the right
tail by smoothing the nonparametric estimators with an appropriate
Nearest Neighborhood Estimator, in practice this will be difficult and
time consuming. The problem on the left tail, on the other hand,
cannot be solved by any method (parametric or nonparametric) un-
less we bring in more data: nothing can be learned where there is no
information.
Given these considerations, we suggest an alternative, practical ap-
proach based on Extreme Value Theory (EVT): this parametric method
relies on the well known convergence results about the extremes of a
distribution (Gnedenko (1943)). Under very mild assumptions, the
distribution of such extremes - appropriately normalized - converges
uniformly to one of three possible distributions: the so called Extreme
Value Distributions (EVD). When we rely on these results, it is pos-
sible to obtain estimates of functionals of practical interest such as
the expected revenue, or the optimal reserve price, in two steps: first,
we estimate the two normalizing constants by minimizing the distance
between the normalized empirical distribution of the extreme and the
corresponding EVD. Second, by applying a simple change of variable
to the integral that expresses the expected revenue of the auction, we
can rewrite everything in terms of EVDs and their transformations.
Extreme value theory also implies a natural approximation for the un-
derlying distribution of bids: the approximating distribution should
be a Generalized Pareto.
We present results from Monte Carlo simulations, and show that the
approximation method performs better than the nonparametric one,
even in cases where the convergence of the extreme distribution to the
limiting one happens at very slow rates2. Even though this extreme
value estimator and its functionals suffer from the same limitations on
the left tail as the nonparametric ones, they appear to be more robust.
Moreover, since its relative advantage seem to hold also for those dis-
tributions for which the extreme value approximation is known to be
poor, we can count with some confidence on the generality of this ap-

2This is, for instance, the case of the Normal distribution. The rate of convergence for
extremes drawn from a normal distribution is of order O(1/ logN)
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proach. In addition, this approach gets better as N increases, making
the extreme value estimator more precise precisely when the nonpara-
metric estimator gets worse. Finally, we observe that computation
time is minimal, making this approach particularly attractive for ap-
plied works. Whenever we are observing auctions with limited data, it
is important to realize that no estimator is going to perform well over
this range: with this understanding, it is better to adopt an approach
that is relatively more robust, general and theoretically justified. The
extreme value estimator has the additional advantage of being com-
putationally easy to perform.
EV T provides a general framework that can be adopted to all mod-
els where an order statistics is observed. For instance, an interesting
extension to financial markets is the estimation of the unobserved dis-
tribution of valuations in multiunit auctions with uniform price.
The paper is structured in the following way: in Section 2 we are going
to present the nonparametric estimator and discuss its behavior in the
tails of the distribution. Section 3 introduces basic and general results
from Extreme Value Theory. In Section 4 we are going to apply EV T
to the auction framework, showing how it is possible to obtain results
of interest relying only on EVDs and their transformations. Finally,
Section 5 shows results from Monte Carlo simulations.

2 Nonparametric Identification and Es-

timation

We restrict our attention to symmetric independent private value
(IPV) auction models, where only the transaction price is observed.
For expositional purposes we are only going to present the case of sec-
ond price auctions. This will allow us to focus on what we called the
statistical mapping 3, and on the problems induced by the statistical
inversion.
The typical dataset will consist of observations from n identical and
independent auctions, where exactly N bidders have participated. We
are going to use the capital letter N to denote the number of bidders,
while lower case n will denote the size of the sample. We assume
that N is exogenous: this condition is necessary in order to apply the
statistical mapping and to establish consistency of the nonparametric
estimator (Athey and Haile (2002), Haile and Tamer (2003)).
Every bidder i = 1, · · · , N , submits an offer, bi: the bid depends on

3In second price auction, it is an optimal strategy for the bidders to bid exactly their
value. Therefore, the bids already provide the private values and no theoretical inversion
is needed.
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her own private value for the item, vi, on the format of the auction,
and on the game she is playing with all the other bidders. Private
valuations are independently drawn from a common distribution, V .
The distribution of the bids is denoted by F . The econometrician ob-
serves only the transaction price from each auction: this transaction
price will be equal to an extreme of the parental distribution. For
instance, in a second price auction, the transaction price corresponds
to the N − 1th order statistics (the second maximum) 4.
The kth order statistic of N independent bids {b1, · · · , bN} has distri-
bution Gk:N (z)5 , where

Gk:N (z) =
N !

(N − k)!(k − 1)!

∫ F (z)

0
tk−1(1− t)N−kdt

Athey and Haile (2002) show that the mapping implicitly described
above is always invertible: therefore it is possible to obtain the distri-
bution of the bids, F (z) = φ(Gk:N (z), N), whenever we can estimate
the distribution of the transaction prices, Gk:N (statistical inversion).
A simple nonparametric estimator for the distribution of the transac-
tion prices is

Ĝk:N (z) =
1
n

n∑
j=1

I[Pj ≤ z]

which6, by Glivenko-Cantelli theorem, converges almost-surely uni-
formly to the true distribution.
Following Haile and Tamer (2003) ( Appendix A, proof of Theorem
3 ), the Continuous Mapping Theorem gives

φ(Ĝk:N , N)− φ(Gk:N , N) = φ(Ĝk:N , N)− F (z) = op(1)

The convergence of the last quantity is also uniform in z: since the
mapping φ is continuous over a compact space, it is also uniformly
continuous. This establish uniform convergence. However, the map-
ping is not Lipschitz continuous: its derivative is unbounded at critical

4We define the kth order statistics in the following way: given a set of N bids, we order
them starting from the smallest and ending with the largest. The set {b1, . . . , bN} denotes
the ordered list. The first element of the list is the first order statistics, and corresponds
to the minimum of the set. The Nth order statistics is the last element of the list, and
corresponds to the maximum. The kth order statistics is simply the element in the kth
position of the list.

5so that, for instance, the distribution of the second maximum, (or, the (N−1)th order
statistics) is GN−1:N (z) = N(N − 1)

[
F (z)N−1

N−1 − F (z)N

N

]
= NF (z)N−1 − (N − 1)F (z)N .

6The symbol I[A] denotes the indicator function, which assumes value equal to 1 when
A is true, and equal to 0 when A is false. Pj denotes the transaction price from the jth
auction.
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points of the support, {z, z}7.
To exemplify this point, suppose that the bidders are participating
to a Second Price auction: the dominant strategy for every player is
to submit her private valuation. The transaction price is therefore
the second maximum of the private values. The mapping φ is defined
implicitly by

G = N(N − 1)
[
φ(G,N)N−1

N − 1
− φ(G,N)N

N

]
By Implicit Function Theorem we can obtain its derivative

φ′(G,N) = 1/
{
N(N − 1)φ(G,N)N−2[1− φ(G,N)]

}
which is unbounded on the lower tail of the distribution, where G goes
to zero, and on the right end, where G goes to 1.
This creates a serious problem in the estimation, since even small bi-
ases will be magnified in the neighborhoods around these points. It is
possible to see that the problem on the lower tail becomes more severe
as N increases, while it is attenuated on the right end of the support.
The convergence of the estimated distribution to the true one will
be slow and dependent on the number of bidders: when N = 1, the
problem is not different from usual ones. However, when N grows to
infinity, identification is lost: the distribution of the extreme degen-
erates to a mass point at the upper bound of the support , and the
rate of convergence becomes equal to zero. This means that when
the number of bidders is high we should expect nonparametric esti-
mates to be a poor description of the behavior of the lower tail of the
distribution. The distribution of the bids is irregularly identificatied,
in the sense that the parametric rate of the preliminary estimator is
lost. Similar problems have been analyzed by Khan and Tamer (2009).

Remark 1 The rate of convergence of the nonparametric estimator
φ(Ĝk:N (z), N), with F (z) ∈ (0, 1), decreases in N , and approaches the
value of zero as N goes to infinity.

Proof Remark 1 For the kernel estimator defined above,
√
n[Ĝk:N (z)−Gk:N (z)] −→ N (0, σ2(z))

where σ(z)2 = F (z)[1− F (z)]. Then, using the Delta Rule
√
n[φ(Ĝk:N (z), N)− φ(Gk:N (z), N)] −→ N (0, σ2(z)[φ′(Gk:N (z), N)]2)

7For k = 1, the derivative is unbounded only at the left end of the support.
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We need to show that φ′(G,N) diverges to infinity as N increases.
From the implicit definition of the mapping, we obtain

φ′(G,N) ≡ ∂φ

∂G
=

1
N !

(N−k)!(k−1)!φ(G,N)k−1(1− φ(G,N)N−k)

we restrict our attention to the class of problems where k/N −→ 18

First we show that G(z,N) is decreasing in N in the lower tail of
the distribution9 . When k/N −→ 1, we can denote N !

(N−k)!(k−1)! as
P (N, q + 1), a polynomial in N of degree q + 1, where q = N − k.
Then

∂G

∂N
= P̃ (N, q)

∫ F

0
tk−1(1− t)N−kdt+

+P (N, q + 1)
∫ F

0
tk−1(1− t)N−k ln(1− t)dt < 0

The limit of the sequence is zero. In fact,

Gk:N (z) ≤ P (N, q + 1)
∫ F (z)

0
t(

k−1
N )Ndt

The argument of this integral is continuous over a compact set, there-
fore it is uniformly continuous. Riemann integrability applies to the
limit of the sequence,

lim
N−→∞

∫ F (z)

0
t(

k−1
N )Ndt =

∫ F (z)

0
lim

N−→∞
t(

k−1
N )Ndt = 0

for z such that F (z) < 1, and for k/N −→ 1. The integral falls to
zero fast and dominates the explosive effect of the polynomial.
Since G(z,N) falls to zero as N increases to infinity when z belongs
to a lower tail of the distribution, φ(G,N) must fall to zero as well,
in order to balance expression (1). This makes the derivative φ′ un-
bounded.

�

8We focus on the higher extremes of the distribution: the first maximum, the second
maximum and so on. We do not consider the lower extremes of the distribution: the
minimum, the second minimum... This assumption is consistent with the framework that
we are using: auctions models will be involved with the former type of extremes.

9What we mean by lower tail of the distribution depends on the particular extreme
that we are considering: for instance, if what we are considering is the maximum, the
relevant range becomes the full support of the distribution, excluding the upper extreme.

7



A secondary problem affects the precision of nonparametric estima-
tors Ĝ(z): the typical dataset is necessarily unbalanced. Higher values
of the support are oversampled while lower values are undersampled
to the point that entire portions of the lower tail might not even be
observed in finite samples. All the measures based on our estimates
will be distorted accordingly: for instance, both expected revenue of
the auction and reservation price will be systematically upward bi-
ased. This problem becomes worse as N grows but it should fade as
sample size increases. However, Monte Carlo simulations show that
the increase in N dominates the effects of an increase in n: as we show
in the next chapters, even with N = 5 and n = 50, 000 the bias stays
significant.
An appropriate Nearest Neighborhood estimator could be used to es-
timate the function. However, we should expect the size of the Neigh-
borhood to increase towards the left of the support, eventually be-
coming infinitely large. Even though it could be possible to correct
for the oversmoothing of high values, in general we will not be able to
compensate for the extreme undersmoothing that might occur around
the minimum of the support.
Nonparametric estimators perform poorly on both tails of the distri-
bution: the bias fades slowly, and in general affects all the measures
of interest. Appropriate smoothing procedures may help reducing the
bias in the upper tail, but in general they will not solve the more press-
ing problem that occur in finite samples. Moreover, such procedures
require an appropriate calibration of a width parameter in order to
produce effective results, and this can be difficult and time consum-
ing. In the next sections we are going to introduce a new approach
to estimation that will require minimum computation time: we will
show that such parametric method produces better results than the
nonparametric one. But in order to discuss the method, we need to
introduce some basic concepts about Extreme Value Theory.

3 Extreme Value Theory

The fundamental insight of EVT is given by the following observation.
If the distribution of the maximum of N independent draws from F ,
appropriately normalized, converges to a distribution function G as N
goes to infinity, then G must be one of the following three:

G1(z) = exp(−z−α), z > 0 (Frechet)
G2(z) = exp(−(−z)α), z ≤ 0 (Weibull)
G3(z) = exp(−e−z), z ∈ R (Gumbel)
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Formally, let P be a probability measure with distribution function
F . Denote with Zi:N the ith order statistics for the sample of size N .

Theorem 1 (Gnedenko (1943)) If there exist real numbers aN > 0
and bN , such that PN

(
ZN :N−bn

an
≤ z
)

10tends to some nondegenerate
limit G(z) then, either G = G1, or G = G2, or G = G3

If it is possible to find a shifting parameter and a scaling parameter,
such that the normalized distribution of the maximum converges, then
the limiting distribution belongs to the Extreme Value family. The
theorem grants a natural parametric approximation for the distribu-
tion of the maximum, up to two normalizing parameters.
Gnedenko (1943) also gave necessary and sufficient conditions for F
to belong to the domain of attraction of any of the above limits (de-
noted F ∈ D(Gh)h=1,2,3). Von Mises (1936) derived a set of sufficient
conditions which are more easily testable. Assume that F has a pos-
itive derivative, f , over its support; then F belongs to the domain
of attraction of G1, G2 or G3, if conditions 1, 2 or 3 are satisfied,
respectively.

lim
z−→∞

zf(z)
1− F (z)

= α (1)

lim
z−→z∈R

(z − z)f(z)
1− F (z)

= α (2)

and ∫ z

−∞
(1− F (u))du <∞

lim
z−→z

f(z)
∫ z

z
(1− F (u))du/(1− F (z))2 = 1 (3)

A useful sufficient condition for condition 3 is the following

∃z ∈ (0,∞) limz−→z
f(z)

1−F (z) = c

It is easy to verify that the uniform distribution satisfies the first Von
Mises condition: therefore the maximum of N independent draws from
a uniform distribution converges to G1. Similarly, we can show that
the normal and the exponential distributions belong to the domain of
attraction of G3. More generally, it is possible to show that the class

10PN denotes the N -fold independent product of P
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of distributions that satisfy the Von-Mises conditions is wide, and in-
cludes all known analytical distributions.
More interestingly for our purposes, Falk and Marohn (1993) rewrite
the von Mises conditions in terms of convergence of the underlying dis-
tribution to a corresponding Generalized Pareto Distribution (gPds).
The gPd family plays an important role in Extreme Value Theory:
convergence of the maximum to an EVD is equivalent to convergence
of the underlying distribution to a Pareto distribution. We will discuss
this point later in the paper.
Falk (1985) shows that the von Mises conditions imply pointwise con-
vergence of the density fN to gN as N goes to infinity 11. This, by
virtue of Scheffé’s Lemma, in turns entails its uniform convergence
over all Borel sets (convergence in Total Variation). In the Appendix
we present uniform bounds for the largest order statistics.

We want to capture the attention of the wandering reader on the fol-
lowing crucial fact: the rate of convergence of supx |FN (aNx+ bN )−
G(x)| to zero depends crucially on the particular distribution F at
hands: for instance, it is of order O(1/N) for the negative exponential
case , and of order O(1/ logN) for the normal case (see the Appendix)
12. The fastest possible convergence rate is actually of order O(1/N)
and is achieved by members of the gPd family. Since we don’t have
knowledge of the underlying distribution we can only make conjec-
tures about the quality of the approximation: since the normal is
known to converge at low rates, we will use it as a “lower reference”
for our simulations. We obtain satisfactory results under the gaussian
assumption, as a consequence we are optimistic about the robustness
of the estimator.
The results presented so far are not exclusive of the first maximum
of a sample of independent draws: in fact, they extend to the whole
joint distribution of the extremes. Define m = N −k+1; if F satisfies
one of the Gnedenko conditions, then F k:N (z) converges uniformly
to G(m)

h (z) = Gh(z)
∑m−1

i=0
1
i! [− logGh(z)]i, where h = 1, 2, 3 indicates

the appropriate limiting EVD. For instance, for the case of the sec-
ond maximum (k = N − 1, or, equivalently, m = 2), the limiting
distribution becomes

G
(2)
h (z) = Gh(z)[1− logGh(z)]

11The result presented in Falk (1985) extends to the generic kth order statistics. We
denote by Gk:N the Extreme Value limit distribution for the kth order statistics. Then,
if one of the von Mises conditions is satisfied, fk:N converges pointwise to gk:N , for any
possible k.

12Finding the normalizing constants aN , bN is not a straightforward task. In practice,
for F ∈ D(G3), we might start with the following guess: bN that solves F (bN ) = 1− 1/N .
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Falk (1989) shows that the best rate of convergence of extremes is
of order O(m/N), and is attained by distributions belonging to the
Generalized Pareto family.

4 Extreme Value Theory in the Esti-

mation of Auction Models

We can make use of the results presented in the previous section,
and approximate the distribution of the extreme with the appropriate
EVD. As discussed by Falk (1985), this corresponds to approximating
the parental unobserved distribution with a gPd. We are going to show
that objects of interest such as Expected Revenue and Reservation
Price can be easily obtained through a simple transformation.
From now on we are going to assume that F possesses a derivative
f . The expected revenue for First Price and Second Price auctions,
corresponding to the expectation of the second maximum valuation,
is given by the following integral (see, for instance, Krishna (2002))

E[R|N ] =
∫ w

0
N(N − 1)xF (x)N−2[1− F (x)]f(x)dx

We want to stress here that, for the simple case we are considering,
it is not necessary to compute the integral in order to obtain the ex-
pected revenue of the auction: for this purpose it is enough to find
the expected value of the transaction prices. This expected value does
not suffer from bias and should therefore be preferred in estimation.
However, for expositional purposes, we are going to refer to the inte-
gral as a benchmark for the heavy bias that affects the nonparametric
estimator. More generally, recovery and use of the distribution F , and
computation of the integral, will be required in order to compute the
optimal reservation price and to perform counterfactual analysis. For
this reason we believe to be important to understand how and with
what magnitude the nonparametric estimator can affect our analysis.
Since F is unknown we cannot evaluate the integral. For simplicity,
we will focus on Second Price auctions, so that the distribution of the
bids corresponds to the distribution of the private values. We are go-
ing to show that the integral can be expressed and estimated in terms
of EVDs, with no significant loss in precision.

Theorem 2 (Expected Revenue) If there exists aN > 0 and bN
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such that P
(
ZN :N−bN

aN
≤ z
)

converges to G(z), then

E[R|N ] ≈
∫ w−bN

aN

− bN
aN

(N − 1)(aN t+ bN )[− logG(t)
1
N ]g(t)dt

For instance, for the class of distributions F ∈ D(G3), the expression
becomes

E3[R|N ] ≈
∫ w−bN

aN

− bN
aN

(N − 1)(aN t+ bN )
e−2t−e−t

N
dt

We construct the proof through a sequence of simple Lemmas that
follow from Falk (1985).

Lemma 1 FN−2(aN t+ bN ) ≈ G(t)

This is simply a rewriting of the assumption of the theorem.
�

Lemma 2 [1− F (aN t+ bN )] ≈ − logG(t)
1
N +O(h(N))

Proof : if F belongs to the domain of attraction of G then

FN (aN t+ bN ) −→ G(t)⇐⇒
N logF (aN t+ bN ) −→ logG(t)⇐⇒

N [F (aN t+ bN )− 1] −→ logG(t)⇐⇒
N [1− F (aN t+ bN )] −→ − logG(t)⇐⇒

1− F (aN t+ bN )

− logG(t)
1
N

−→ 1

�

Lemma 3 aNf(aN t+ bN ) ≈ 1
N

g(t)
G(t)

Proof : Since F possesses a derivative f near the right end of the
support, the previous condition implies

aNf(aNθ + bN )
1
N

g(θ)
G(θ)

=
F (aN t+ bN )− F (aNy + bN )

[− logG(t)
1
N ]− [− logG(y)

1
N ]
−→ 1

for some θ ∈ (t, y).
�
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Proof of Theorem 2 The proof of the theorem is concluded
by performing a simple change of variable in the original integral,
t = (x − bN )/aN , and applying the approximations presented in the
previous lemmas.

E[R|N ] =
∫ w−bN

aN

− bN
aN

N(N − 1)(aN t+ bN )F (aN t+ bN )N−2 ∗

∗[1− F (aN t+ bN )]f(aN t+ bN )aNdt ≈

≈
∫ w−bN

aN

− bN
aN

N(N − 1)(aN t+ bN )G(t)[− logG(t)
1
N ]

g(t)
NG(t)

dt =

=
∫ w−bN

aN

− bN
aN

(N − 1)(aN t+ bN )[− logG(t)
1
N ]g(t)dt

�

The approximation allowed by this theorem does not depend on the
unknown distribution F , except through an appropriate choice of nor-
malizing constants: the new expression depends entirely on the nor-
malizing constants aN , bN and on the EVD, G. Procedures that test
for the particular type of Extreme Value distribution to be used have
long existed in the literature. We present here a new and more natural
approach, that allows us to simultaneously estimate the normalizing
parameters and test for the appropriate approximation.

4.1 Estimation

The normalizing constants can be estimated through some standard
minimum distance (MD) criterion13. A widely used criterion is the
Cramér-von-Mises, which uses the integral of the squared difference
between the empirical and the estimated distribution functions. Among

13Let {Pθ} be a family of probabilities indexed by θ, and let µ be a metric between prob-
abilities. Let θ̂(P ) be the corresponding minimum distance functional, i.e., the solution
to

µ(P, Pθ̂) = min
θ
µ(P, Pθ)

The MD functional is consistent and robust over µ-neighborhoods (Rao-Schuster-Littel
(1975), Parr-Schucany (1979), Donoho-Liu (1988))
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the estimators based on non-Hilbertian14 metrics, the most common
is the Kolmogorov-Smirnof

Qn,N (aN , bN ) = sup
xn

∣∣∣∣F̂ k:N (xn − bNaN

)
−G(m)(xn)

∣∣∣∣
{âN , b̂N} = arg min

aN ,bN
sup
x

∣∣∣∣F̂ k:N (x− bNaN

)
−G(m)(x)

∣∣∣∣
where m = N − k + 1. It is well known that Kolmogorov-Smirnof
distance immediately provides a test for goodness of fit. So, in or-
der to find the relevant approximating distribution, we simply need
to compare the Kolmogorov-Smirnof distance under the three EVD
and test for the best approximation. This procedure is simple and
avoids having to compute the maximum likelihood estimator of the
generalized extreme value distribution.
Consistency arises naturally thanks to Gnedenko’s theorem (see for
instance Hayashi (2000)).

Assumption 1 The normalizing constants (âN , b̂N ) belong to a com-
pact space, Θ ⊂ R2

Let Qn,N (aN , bN ) = F̂ k:N
(
xn−bN
aN

)
be the objective function: since

Qn,N (aN , bN ) is a continuous and measurable function in (aN , bN ) for
all the data, a measurable function exist that solves the minimization
above.
Let Q0(a, b) = limN−→∞ F

k:N
(
xn−bN
aN

)
= G(m)(xn).

Assumption 2 Gnedenko Theorem holds. As an implication of that

1. (identification) Q0

4.2 The Optimal Reserve Price

Using a similar approach we can estimate the optimal Reserve Price
(RP ) of the auction, given a specific Value for the seller, x0

15: it is

14By Hilbertian we mean based on a quadratic measure of deviation

15The expected revenue with reserve price is equal to

max
θ

E[R|N,RP ] =
∫ w

RP

N(N − 1)xF (x)N−2[1− F (x)]f(x)dx+

+x0F (RP )N +N(RP )[1− F (RP )]F (RP )N−1

14



possible to perform a numerical search over the parameter θ = RP−bN
aN

that maximizes the expected revenue

max
θ

E[R|N, θ] =
∫ w−bN

aN

θ
(N − 1)(aN t+ bN )[− logG(t)

1
N ]g(t)dt+

+x0G (θ) +N(aNθ + bN )[logG(θ)
1
N ]G(θ)

As a final remark about the extension to which Extreme Value
Theory can be used to replace Nonparametric estimation, a close look
at Lemma 2 suggests the possibility to approximate the right tail
of the distribution16 F with a Generalized Pareto distribution (see
Pickands (1975)). The class of gPd is composed by the following
three normalized families,

P1(x) = 1− x−α, x ≥ 1, α > 0
P2(x) = 1− (−x)α, x ∈ [−1, 0], α > 0
P3(x) = 1− e−x, x ≥ 0

It is easy to see that the uniform distribution belongs to the first family
and the negative exponential belongs to the third family. Lemma 2
justifies the following approximation,

F (aN t+ bN ) ' 1 + logGh(t)
1
N ==


P1(tN

1
N ) for h = 1

P2(tN−
1
N ) for h = 2

P3(t+ logN) for h = 3

5 Monte Carlo Simulations

In this section we are going to present some results from Monte Carlo
simulations in support of the theory presented in the previous chap-
ters. In order to simplify the discussion we are going to focus on the
case of Second Price auctions: this implies that the bids drawn are also
the valuations of the bidders. We are going to show and discuss the
results for two distributions, chosen for their opposite N -asymptotic
behavior: the first distribution is a Normal, with parameters µ = 10
and σ = 217, while the second distribution is a Negative Exponential
with parameter λ = 0.2. As discussed above, extremes of a nor-
mal distribution converge at a slow rate to the Gumbel family, while
the negative exponential possesses the highest possible rate of conver-
gence. We are considering asymptotic behavior by letting both N ,

16The relative magnitude of this right tail depends on N and on the particular parental
distribution F .

17The specific choice of the parameter does not affect the results
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the number of bidders, and n, the number of auctions (i.e. the sample
size), increase. In particular, N can take values 5, 50, 100, 150; while
n values 5,000 and 50,000.
We estimated the normalizing constants using the Kolmogorov-Smirnof
measure. We compared them with estimates obtained with the Cramér-
von Mises criterion and found no significant differences. A useful out-
come of The Kolmogorov-Smirnof criterion is the availability of a test
for the goodness of fit: in all simulations, the normalized empirical
distribution is not significally different from the corresponding EVD.
We produce standard errors for expected revenue and reserve price
through a Bootstrapping procedure.
Figure 1 up to Figure 8 provide a graphical representations of the
goodness of fit of the nonparametric estimator and of the estimator
based on Extreme Value Theory: since EVT offers an approximate
result, we are going to call this estimator the Approximate distribu-
tion 18. The Approximate distribution is represented graphically by
the green curve; the red curve represents the nonparametric estima-
tor. The blue dotted curve is the true CDF. The figures immediately
illustrate three points: first, as N , the number of bidders, increases
the bias of the nonparametric estimator rises. Second, the size of the
dataset seems to have very little effect on the quality of the estimates.
Finally, while for the case of the Negative Exponential the Approxi-
mate estimator performs incredibly well , when we analyze the case
of the normal distribution the fit is much less satisfactory : as the
number of bidders increases, EV T delivers better results than the
nonparametric estimator, but the bias in the lower tail still appears
to be relevant.

Next, we are going to show how the different approaches perform
in terms of prediction of the expected revenue from the auction: as
before, we are presenting results only for the cases of a negative expo-
nential and of a normal distribution (see Table 1 and Table 2, respec-
tively). As the number of bidders increases from 5 to 150, the expected
revenue from the auction increases correspondingly: this is intuitive,
since the expectation of receiving a higher bid increases with the num-
ber of participants in the auction. EV T provides a good estimate of
the expected revenue: the bias from the Approximation is high for
small number of bidders, but it rapidly decreases. The sample size
affects the precision of the estimation of the normalizing constants,
âN , b̂N , and, with them, the precision of the fit. The nonparametric
estimator however is severely affected by the number of bidders: for
both cases it starts form 60% and increases above 1,000 % for the

18As discussed in the previous section, the Approximate distribution is an appropriately
normalized gPd
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Figure 1: CDF estimation: Normal, µ = 10, σ = 2, N = 5.
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Figure 2: CDF estimation: Normal, µ = 10, σ = 2, N = 50.
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Figure 3: CDF estimation: Normal, µ = 10, σ = 2, N = 100.
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Figure 4: CDF estimation: Normal, µ = 10, σ = 2, N = 150.
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Figure 5: CDF estimation: Negative Exponential, λ = 0.2, N = 5.
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Figure 6: CDF estimation: Negative Exponential, λ = 0.2, N = 50.
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Figure 7: CDF estimation: Negative Exponential, λ = 0.2, N = 100.
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Figure 8: CDF estimation: Negative Exponential, λ = 0.2, N = 150.
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Num. bidders n. Auctions True E. Rev. Bias Approx. Bias Nonp.

5 200 6.3519 -22.54% 66.29%
50 200 17.4549 -3.01% 1,244%
100 200 20.8246 -1.90% 2,511%

5 5000 6.3519 -19.56% 63.49%
50 5000 17.4549 -1.84% 912.67%
100 5000 20.8246 -0.88% 936.58%

Table 1: Negative Exponential, λ = 0.2: Prediction of the Expected Revenue

Num. bidders n. Auctions True E. Rev. Bias Approx. Bias Nonp.

5 200 11.0016 -22.48% 62.12%
50 200 13.718 -2.36% 1,185%
100 200 14.2864 -1.90% 2,440%

5 5,000 11.0016 -22.13% 60.88%
50 5,000 13.718 -2.04% 822.45%
100 5,000 14.2864 -1.03% 866.72%

Table 2: Normal Distribution, µ = 10, σ = 2: Prediction of the Expected Revenue

exponential, and 920% for the normal. Increasing the sample size up
to 50,000 observations seems to have a minor benefit on the estimates.
Again, EV T performs slightly better when the parental distribution
is the negative exponential, but the difference in the fit is small. The
nonparametric approach favors distributions with slow rate of conver-
gence, like the normal one; but still drastically underperforms com-
pared to EV T .

Last, we are going to focus on the optimal Reserve Price of the
auction when the seller has an outside value equal to x0 (we assume
x0 = 1.25 for the negative exponential case, and x0 = 10.8 for the
normal case). Tables 3 and 4 present results for the two distributions.
A theoretical result from Auction Theory states that the true reserve
price is not affected by the number of bidders, nor by the sample size:
within the boundaries of numerical computation, the Monte Carlo ex-
ercise supports the result. For comparison purposes, we have fixed the
true reserve price to an average of the computed values.
The number of bidders however affects the optimal reserve price com-
puted under the two approaches: when the Approximate distribution
is used, the precision increases with N . As a consequence, the bias
of the induced expected revenue, the true expected revenue given the
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Num. bidders n. Auctions True Res. Val App. Res. Val Nonp. Res.Val True E. Rev. Bias Approx. Bias Nonp.

5 5000 2.5306 2.286 2.5581 4.9354 -0.11% -0.26%
[0.0013] [0.1003]

50 5000 2.5306 2.3474 3.2848 5.3238 -0.00% -4.10%
[0.0180] [0.357]

100 5000 2.5306 2.458 3.3704 5.4149 <10^-3 -8.79%
[0.0012] [0.5032]

150 5000 2.5306 2.5256 3.4527 5.9499 <10^-3 -10.00%
[0.0042] [0.6789]

5 50000 2.5306 2.289 2.5127 4.9354 -0.11% -0.25%
[0.0013] [0.074]

50 50000 2.5306 2.3196 3.1894 5.3238 -0.00% -4.03%
[0.0139] [0.2319]

100 50000 2.5306 2.458 3.2263 5.4149 <10^-3 -7.34%
[0.0012] [0.4721]

150 50000 2.5306 2.5256 3.2915 5.9499 <10^-3 -10.16%
[0.0042] [0.5089]

Table 3: Exponential Distribution, λ = 0.2, x0 = 1.25: Prediction of the Expected
Revenue with Optimal Reserve Price

Num. bidders n. Auctions True Res. Val App. Res. Val Nonp. Res.Val True E. Rev. Bias Approx. Bias Nonp.

5 5000 12.0832 13.1854 12.9484 11.454 -1.56% -0.76%
[0.0020] [0.2136]

50 5000 12.0832 12.8005 13.8545 12.909 -0.08% -0.89%
[0.0281] [0.3486]

100 5000 12.0832 12.5411 13.975 14.9269 -0.00% -1.12%
[0.0134] [0.2945]

150 5000 12.0832 11.9286 14.1249 14.3471 <10^-3 -1.36%
[0.0222] [0.4486]

5 50000 12.0832 13.079 12.9123 11.454 -1.56% -0.64%
[0.0022] [0.2214]

50 50000 12.0832 12.7532 13.7297 12.909 -0.07% -0.72%
[0.0239] [0.2486]

100 50000 12.0832 12.3295 13.929 14.9269 -0.00% -1.09%
[0.0214] [0.2130]

150 50000 12.0832 11.8672 14.0142 14.3471 <10^-3 -1.22%
[0.0189] [0.3465]

Table 4: Normal Distribution, µ = 10, σ = 2;x0 = 10.8: Prediction of the Expected
Revenue with Optimal Reserve Price
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estimated reserve price, falls to zero immediately. On the other hand,
when the nonparametric approach is used, the precision decreases with
N . However, the loss in precision is not as drastic as it was when only
the expected revenue with no reserve price was considered. When
N = 150, the bias in the induced expected revenue is only 10%, for
the case of the exponential distribution, and −1.22%, for the case
of the normal distribution. The reason is that the lower tail of the
support is ignored by virtue of the outside value: by eliminating the
region where most of the bias is located, the nonparametric method
is able to provide satisfactory results.
Finally, as we have seen above, the magnitude of the sample size af-
fects only slightly the precision of the estimates: this confirms the
argument that convergence occurs slowly.

We have derived results from other distributions, such as uniform,
lognormal and mixed distributions for which there is no analytical
expression, and the evidence seems consistent. The approach based
on EV T systematically provides better estimates than the nonpara-
metric approach. It is to be noted that the approximation method is
computationally easier to perform, since it breaks down to the estima-
tion of only two normalizing constants: all the subsequent steps can
be solved analytically, using the appropriate gPd or EVD.

6 Conclusions

The results presented in the previous section provide support to the
theory advanced in this paper: the parental distribution of bidders’
valuations cannot be estimated at the regular rate, and therefore is
irregularly identified. Monte Carlo simulations show that even when
the sample size contains as much as 50,000 observations, the bias stays
relevant and is not significantly lower than the one present when the
sample size counted only 5,000 observations. The number of bidders
strongly affects the precision of the estimates, and dominates every
sample size effect.
The approximating distribution derived through EV T suffers from
lack of precision on the left tail as well: however, EV T provides uni-
form bounds that ensure that the bias fades fast with N . The approxi-
mate distribution performs better than its nonparametric counterpart,
even when the approximation is known to occur slowly, such as the
case of the normal distribution. Increasing the value of N makes the
EV T estimates more precise, and, simultaneously, the nonparametric
estimates worse. The n-asymptotics predict an increase in efficiency
for the nonparametric estimator, given a fixed N : however, the rate of

27



convergence of such estimator is so low that, realistically, no available
dataset is able to satisfy the data requirement.
Even though the form of the approximating distribution is analytical,
the set of assumptions that justify its use are very mild and we could
reasonably expect most of existing distributions to satisfy them. The
practical advantage of adopting analytical formulas relies on saving
computational time, making the computation of the relevant measures
a minor task.
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Appendix

Appendix A: Extreme Value Theory: Conver-
gence Rates for First Order Statistics

We are going to show here that the convergence rate for the case of
the negative exponential is of order O(1/N) (Hall and Wellner (1979)),
and of order O(1/ logN) for the normal case (Hall (1979)).

Normal Distribution Consider a standard normal random vari-
able. The guesses for the normalizing constants, aN , bN are such that

1− Φ(bN ) =
1
N

and aN = 1/bN .
We are going to make use of the approximation

1− Φ(x)
φ(x)

=
1
x

to rewrite the condition for bN

1− Φ(bN ) =
1
bN

1√
2π
e−

b2N
2 =

1
N

=⇒ bN = N
1√
2π
e−

b2N
2

In order to solve for the root of this function, we first log-linearize it

f(bN ) = 2 logN − b2N − 2 log bN − log 2π

and then we apply Newton Method: the first order approximation is
given by

f(bN ) = 0 =⇒ b2N = 2 logN − 2 log bN − log 2π

bN,0 =
√

2 logN − 2 log bN − 2 log 2π ≈
√

2 logN

Then,

f(bN,0) = 2 logN − 2 logN − 2 log
√

2 logN − 2 log π =

= − log 2 logN − log 2π = − log logN − log 4π

and the first derivative

f ′(bN ) = −2bN − 2
2
bN

=⇒

f ′(bN,0) = −2
√

2 logN − 2√
2 logN

≈ −2
√

2 logN
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Finally,

bN =
√

2 logN − 1
2

log logN + log 4π√
2 logN

Now it is possible to use the result presented in Lemma 3 19

1
bN
φ

(
x

bN
+ bN

)
=

( √
2π

Ne−
b2
N
2

)
1√
2π
e
− x2

2b2
N

− b2N
2
−2x

=

= exp(−x− logN )︸ ︷︷ ︸
= 1

N
g(x)
G(x)

e
− x

2b2
N︸ ︷︷ ︸

=1+hN (x)

Since, ex ≈ 1 + x, and using the first order approximation for bN =√
2 logN

hN (x) = e
− x2

2b2
N − 1 ≈ − x2

2b2N
≈ − x2

4 logN

The rate of convergence for a normal distribution is of orderO(1/ logN)

Exponential Distribution Consider the distribution function
for a negative exponential distribution, with parameter λ.

F (x) = 1− e−λx

As normalizing constants we are going to use, aN = 1
λ and bN =

1
λ logN 20. From Lemma 3

1
λ
λ
e−x

N
=
e−x

N
=

1
N

g(x)
G(x)

[1 + hN (x)]

Since 1
N

g(x)
G(x) = e−x

N , we have

e−x

N
=
e−x

N
[1 + hN (x)]

19We recall here the result, for brevity

aNf(aN t+ bN ) =
1
N

g(t)
G(t)

[1 + hN (x)]

with h(N) going to zero at the Convergence rate.
20It is easy to see that this choice gives exact convergence to a Gumbel distribution. In

fact

F (aNx+ bN )N =
[
1− e−λ(aNx+bN )

]N
=
[
1− e−x

N

]N
−→ e−e

−x
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which implies that
hN (x)
N

−→ 0

Therefore the rate of convergence is of order N

Appendix B: Uniform Bounds for The Largest
Order Statistics

The results presented in the paper have made use of the convergence
of the order statistics to the corresponding EVD. The actual type
of convergence implied by theory is stronger than the one used in the
paper. We are going to show in this section that the order statistics
converge uniformly, we are going to provide uniform bounds for such
converge, and we will argue that the fastest possible rate of conver-
gence is exactly of order O(1/N).

Going back to the original representation, if

FN (aNx+ bN ) −→ G(x)

then

dFN (aNx+ bN )
dx

= NaNf(aNx+ bN )FN−1(aNx+ bN ) −→ G(x)p(x) = g(x)

were p(x) is the density of the corresponding gPd. Convergence of the
densities implies uniform convergence, by Scheffé’s Lemma

lim
N−→∞

sup
B∈B

∣∣∣∣PN (XN :N − bN
aN

∈ B
)
−G(B)

∣∣∣∣ = 0

We are going to make use of two results implied by Reiss (1981). The
first,

Lemma 4 Let N ∈ N. There exists a constant C ∈ R+ such that

sup
B∈B

∣∣UN ({N [XN :N − 1]} ∈ B)−G(B)
∣∣ ≤ C

N

where U is the uniform distribution over (0, 1).

and the second,

Lemma 5 Let P1,P2 be two probability measures on a measurable
space, (X,B), dominated by a σ measure µ. Denote by p1, p2 the
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µ−densities of P1 and P2 respectively. Then,

sup
B∈B
|P1(B)− P2(B)| ≤

√
1−

(∫ √
p1

p2
dP2

)2

≤

≤

√
1− exp

{∫
log

p1

p2
dP2

}
Now we can state the theorem,

Theorem 3 Suppose there exists aN > 0, bN , such that, for the prob-
ability distribution P,

PN
(
XN :N − bN

aN
≤ x

)
−→ G(x)

then,

sup
B∈B

∣∣∣∣PN (XN :N − bN
aN

∈ B
)
−G(B)

∣∣∣∣ ≤ C + 2
N

+

√∫ (
hN (x)

2

)2

G(dx)

Proof: Consider the inverse of F , F−1(t) := inf{x ∈ R|F (x) ≥ t},
then

PN (ZN :N ) = UN (F−1(ZN :N ))

From Lemma 4,

sup
B∈B

∣∣∣∣∣P
(
XN :N − bN

aN
∈ B

)
− E

(
F−1

[
1− x

N

]
− bN

aN
∈ B

)∣∣∣∣∣ ≤ C

N

where E denotes the negative exponential distribution, E(x) = 1−e−x.

Define the measure µ/B as

µ(B) := E

(
F−1

[
1− x

N

]
− bN

aN
∈ B

)

with associated Lebesque density

m(x) = NaNf(aNx+ bN )e−N(1−F (aNx+bN ))

Similarly,
µ̃ :=

µ

1− e−N
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is a probability measure with density m̃ := m
1−e−N . Then,

sup
B∈B
|µ̃(B)− µ(B)| ≤ e−N ≤ 1

N

The uniform bound that we are looking for is given by

sup
B∈B
|PN −G| ≤ sup

B∈B
|PN − µ|+ sup

B∈B
|µ− µ̃|+ sup

B∈B
|µ̃−G|

Next, we apply Lemma 5 and write

sup
B∈B
|µ̃(B)−G(B)| ≤

√√√√1− exp

{∫
log

h̃

g
dG

}
=

=

√
1− exp

{∫
log

h

g
− log(1− e−N )

}
dG ≤

≤

√
1− exp

{∫
−N(1− F (aNx+ bN )) + log(NaNf(aNx+ bN ))− log(G(x)p(x))G(dx)

}
Isolate the first term inside the integral, then, applying Fubini’s The-
orem,

=⇒
∫

1− F (aNx+ bN )G(dx) =
∫ ∫ ∞

aNx+bN

f(y)d(y)G(dx) =

=
∫
aN

∫ ∞
x

f(aNx+ bN )dyG(dx) = aN

∫
f(aNy + bN )G(y)dy =

= aN

∫
f(aNy + bN )

p(y)
dy

Finally, this allows us to rewrite

sup
B∈B
|µ̃(B)−G(B)| ≤

=

√
1− exp

{∫
−N aNf(aNx+ bN )

p(x)
+ logN

aNf(aNx+ bN )
p(x)

− logG(x)G(dx)
}
≈

≈

√∫
−N aNf(aNx+ bN )

p(x)
− 1 + logN

aNf(aNx+ bN )
p(x)

G(dx) =

=

√√√√∫ g(x)
G(x)

p(x)
[1 + hN (x)]− 1− log

g(x)
G(x)

p(x)
[1 + hN (x)]G(dx) =

=

√∫
hN (x)− log[1 + hN (x)]G(dx) ≈

√∫
hN (x)2

2
G(dx)
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since x− 1− log x ≈ (x−1)2

2
�

Since hN (x) is at most of order O(1/N) for the gPd family, it must
be that the tightest possible uniform bound is also of order O(1/N).

Extending the proof, it is possible to show that Theorem 3 extends to
the whole joint distribution of the order statistics.

Theorem 4 Suppose there exists aN > 0, bN such that,

PN
(
XN :N − bN

aN
≤ x

)
−→ G(x)

then, for any N ∈ N and k = 1, ·, N

sup
B∈Bk

∣∣∣∣∣PN
({

XN−i+1:N − bN
aN

}k
i=1

∈ B

)
−G(k)(B)

∣∣∣∣∣ ≤ C + 2
N

k +

+

√√√√∫ hN (x)2

2

k∑
i=1

g(i)(x)dx
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