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Abstract

We consider the problem of approximating a continuous utility function, V , defined over the

set of lotteries, P (X), where the set of prizes, X, is a finite set or a compact metric space.

To do this, we derive a functional form of an approximating function, V̂ . If h is a real-valued,

continuous, and injective function on X, then V̂ is a linear combination of the raw moments of

h and their powers. Since we consider a global approximation over the whole set of lotteries, our

result complements the literature focusing on “local approximation” initiated by [11].
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1 Introduction

Let X be the set of prizes and P (X) the collection of lotteries over X. Assume that the agent’s utility

function, V , defined over P (X) is continuous. The functional form of V is not known and, as a result, it

is not possible to estimate the agent’s utility function. In such cases, this paper suggests an approximation

of V by V̂ in which the functional form of V̂ is known and can be estimated. As such, the approximation

method employed in this paper is a useful tool for analyzing the agent’s behavior.

This paper focuses on a global approximation of V—that is, an approximation over the whole set, P (X).

We endow P (X) with the weak-* topology. The objective is to approximate V using a linear combination

of functions that we construct. (Later we discuss how to construct such functions.) With a given set

of such real-valued functions, {f1, ..., fn, ...}, which are defined on P (X), an approximation of V is V̂ =

a0 + a1f1 + ...+ anfn. Knowing the agent’s choices, it is possible to use this functional form to estimate the

parameters a0,...,an.

As an example of our approach, consider a two-element set, X = {x, y}. A generic element of P (X) is a pair,

(p, q), where p and q are weights assigned to x and y, respectively. Since p+ q = 1, P (X) can be identified

with the segment, [0, 1]. Let V be a continuous utility function over P (X). Since P (X) is equivalent to [0, 1],

we define V as a function of one variable, p. The Weierstrass Approximation Theorem tells us that there

exists an integer n, such that V is approximated by a polynomial, V̂ (p) = a0 +a1p+ ...+anp
n. However, we

do not want to express V̂ in terms of p since, for X of cardinality larger than 2, probability is not a scalar

and, in consequence, V̂ (p) could not be a function with values in R. Alternatively we can express V̂ in terms

of moments of some function h. Let h be a real-valued function on X, such that h(x) > h(y). The expected

value of h under p is E(h, p) = h(x)p + h(y)(1 − p). This yields a formula for p, p = E(h,p)−h(y)
h(x)−h(y) , which we

substitute into V̂ (p) in order to obtain V̂ (p) = b0 + b1E(h, p) + ... + bnE
n(h, p). In short, we can conclude

that a continuous utility function on P (X) for a two-element X is approximately an n-degree polynomial

whose variable is the expected value of h.

This paper analyzes the global approximation of a continuous utility function defined over the set of lotteries.

As such, this analysis complements the literature that focuses on local approximation. This literature begins

with [11], who shows that a Fréchet differentiable utility function on P (X) behaves locally in accordance

with the expected utility hypothesis. Key later developments were contributed by [1], [6], [4], [12], [7], [15],

[5], and [3].

2 Main result

Let Y be a metric space and C(Y ) the collection of real-valued, continuous, and bounded functions defined

over Y . Set C(Y ) is endowed with the topology of uniform convergence. That is, a sequence of functions in
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C(Y ), {Vn}, converges to a function in C(Y ), V , if and only if supy∈Y |Vn(y)−V (y)| goes to zero, as n goes to

infinity. We say that V̂ ∈ C(Y ) approximates V ∈ C(Y ) with ε degree of accuracy if supy∈Y |V̂ (y)−V (y)| <
ε. The existence of such a V̂ is guaranteed by the Stone-Weierstrass Approximation Theorem (see, for

instance, Theorem 34 in [14]), which requires that (a) the set Y be a compact space, and (b) there be

algebra in C(Y ) that contains constant functions and separates points in Y .

In our case, condition (a) is easily satisfied. Note that Y is the set of lotteries on X, P (X). It is a well

known fact in the probability theory that if X is a compact metric space and P (X) is endowed with the

weak-* topology, then P (X) is also a compact metric space (see, for instance, Theorem 6.4 in [13]). Hence,

we require that the underlying set X be a compact metric space.

As for condition (b), suppose that there exists a real-valued, continuous, and injective function, h : X → R.

(Later, we will discuss what restrictions on X the existence of h imposes.) Fix that function, and taking a

positive integer k, let E(hk, p) denote the kth raw moment of h under p ∈ P (X). In other words, E(hk, p) is a

real-valued function defined on P (X) as E(hk, p) :=
∫
X
hkdp. Since we can construct h and its raw moments,

our objective is to express V̂ , an approximation of V , as a linear combination of E(hk, p)’s and powers of

E(hk, p)’s. Let Ω be a countable set consisting of functions E(hk, p)’s. In the case of finite X with cardinality

m, Ω must contain the first m − 1 raw moments—that is, Ω = {E(h, p), ..., E(hm−1, p)}. However, in the

case of infinite X, we need all raw moments—that is, Ω = {E(h, p), ..., E(hm−1, p), ...}. We say that ψ is a

polynomial generated by Ω if ψ is a function defined on P (X) and if there is a positive integer, r, such that

{Ei1(h, p), ..., E(hir , p)} is a subset of Ω and ψ has a functional form, ψ = a0 +
∑r

k=1(a1,kf
k
ik

+ ...+ar,kf
k
kr

),

where a0,a1,1,..., ar,r are the parameters belonging to real line. Let Ψ(Ω) be the set of all polynomials

generated by Ω. As the Main Result shows, Ψ(Ω) is dense in C(P (X)).

In the Main Result that follows, we consider two cases: finite X and infinite X. The results and proofs differ

between these cases. If X is finite, then we deduce that required Ω is finite, and our proof relies on linear

algebra. If X is infinite, then Ω must be infinite, and use probability theory to prove the result.

It is necessary to discuss the limits imposed by the existence of the real-valued, continuous, and injective

function, h, defined on X. If X is countable, then, a from topological perspective, X is a subset of a real

line, and consequently, there must be an injective function, h : X → R. However, if X is uncountable,

then imposing the existence of h implies specific topological restrictions on X. Note that X and h(X) are

homeomorphic (see, for instance, Proposition 4.1 in [10]). Since h(X) is a subset of R, not every X will satisfy

our demands. What we need is X with a topological dimension that is the same as, or smaller than, the

topological dimension of R. Here it is important to note that topological dimension, also known as covering

dimension, is the fundamental concept of dimension theory (see, for instance, Definition 1.6.7 in [8]). We say

that a topological space X has topological dimension n if every finite open cover of X has a finite refinement

of order that is no more than n. The order of the set of subsets is the largest number n, such that n + 1

of its elements have non-empty intersection. For example, the empty set has dimension −1, any countable
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set has dimension 0, and Rn has dimension n (see, for instance, Theorem 1.8.3 in [8]). If X has dimension

n, then every closed subset of X has a dimension of, at most, n (see, for instance, Theorem 3.1.3 in [8]). In

our case, this means that h(X) can have dimensions −1, 0, or 1. If two spaces are homeomorphic, then they

have the same dimension. In our case, this means that the dimension of X will be, at most, 1. Hence, X

must be either countable or similar to [0, 1]. If X were, for instance, [0, 1]× [0, 1], then its dimension would

be 2 (see, for instance, Corollary 1.8.4 in [8]). In that case, the approximation method pursued in this paper

would not apply.

Main Result

1. Finite case: Let X be a finite set with cardinality larger than 1. Let V be a continuous utility function

on P (X). Let h be a real-valued injective function defined on X. Let Ω = {E(h, p), ..., E(hm−1, p)}.
Then, for each ε > 0, there exists ψ ∈ Ψ(Ω), such that supp∈P (X) |ψ(p)− V (p)| < ε.

2. Infinite case: Let X be a compact metric space. Let V be a continuous utility function on P (X).

Assume that there exists a real-valued, continuous, and injective function h defined on X. Let Ω =

{E(h, p), ..., E(hm−1, p), ...}. Then, for each ε > 0, there exists ψ ∈ Ψ(Ω), such that supp∈P (X) |ψ(p)−
V (p)| < ε.

To prove the Main Result, first note that Ψ(Ω) contains constant functions and is an algebra: If a, b ∈ R
and ψ1, ψ2 ∈ Ψ(Ω), then aψ1 + bψ2 ∈ Ψ(Ω) and ψ1ψ2 ∈ Ψ(Ω). Next we prove that Ψ(Ω) separates points in

P (X). We will consider two cases: finite X (Lemma 2.1) and infinite X (Lemma 2.2).

Lemma 2.1.

Let X be a finite set with cardinality larger than 1. Let h be a real-valued injective function defined on X.

Then, for distinct p, q ∈ P (X), there exists k ∈ {1, ...,m− 1}, such that
∑m

i=1 h
k(xi)pi 6=

∑m
i=1 h

k(xi)qi.

Lemma 2.2.

Let X be a compact metric space. Assume that there exists a real-valued, continuous, and injective h defined

on X. Then, for distinct p, q ∈ P (X), there exists a positive integer k, such that
∫
X
hkdp 6=

∫
X
hkdq.

Proof of Lemma 2.1:

For simplicity, let hk denote h(xk). Without losing generality, assume that h1 > h2 > ... > hm. Then take

two probability measures on X, p and q, such that p 6= q. Suppose that, for each k = 1, ...,m− 1, it is true

that
∑m

i=1 h
k(xi)pi =

∑m
i=1 h

k(xi)qi. Then the following must be true.
(p1 − q1)h1 + ...+ (pm − qm)hm = 0

...

(p1 − q1)hm−11 + ...+ (pm − qm)hm−1m = 0

(1)
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Next, we re-write (1) to reflect the fact that pm = 1− p1 − ...− pm−1 and qm = 1− q1 − ...− qm−1.
(p1 − q1)(h1 − hm) + ...(pm−1 − qm−1)(hm−1 − hm) = 0

...

(p1 − q1)(hm−11 − hm−1m ) + ...(pm−1 − qm−1)(hm−1m−1 − hm−1m ) = 0

(2)

We define two matrices,

ym :=


p1 − q1

...

pm−1 − qm−1

 and Am :=


h1 − hm · · · hm−1 − hm

...
...

hm−11 − hm−1m · · · hm−1m−1 − hm−1m

 ,

which allow us express (2) as a matrix system, Amym = 0. According to Cramer’s Rule (see, for instance,

Theorem 4.9 in [9]), if the determinant of Am is non-zero, then there exists the unique solution of Amym = 0.

In our case, ym = 0 would be this solution. However, if ym = 0, then p = q, which contradicts the initial

assumption. Hence, it remains to be proven that Am is an invertible matrix. The proof, by induction, is

presented next.

Take m = 2, and note that A2 is invertible as A2 = h1− h2, due to the injectivity of h, is non-zero. Assume

that Am−1 is invertible. We need to prove that the determinant of Am is non-zero.

Using the Newton’s binomial formula, hli−hlj = (hi−hj)(hl−1i +hl−2i hj + ...+hih
l−2
j +hl−1j ), we can rewrite

Am as a product of two matrices, Am = BmCm.

Bm :=



1 · · · 1

h1 + hm · · · hm−1 + hm

...
...

hm−31 + hm−11 hm + ...+ h1h
m−2
m + hm−3m · · · hm−3m−1 + hm−2m−1hm + ...+ hm−1h

m−2
m + hm−3m

hm−21 + hm−31 hm + ...+ h1h
m−3
m + hm−2m · · · hm−2m−1 + hm−3m−1hm + ...+ hm−1h

m−3
m + hm−2m
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Cm :=



h1 − hm 0 · · · 0 0

0 h2 − hm · · ·
...

...

...
...

. . .
...

...

0 · · · · · · hm−2 − hm−1 0

0 · · · · · · 0 hm−1 − hm


The determinant of Am is the product of the determinants of Bm and Cm. The determinant of Cm is the

product of its diagonal elements. Since h is injective, the determinant of Cm is non-zero, though, it remains

to be shown that the determinant of Bm is also non-zero. Note that Bm is an (m − 1) × (m − 1) matrix,

and recall that adding a multiple of a row (or column) to another row (or column) does not change the

determinant. Then consider the following sequence of manipulations of Bm.

1. Multiply row (m − 2) by hm and subtract it from row (m − 1). In column 1, we obtain hm−21 +

hm−31 hm + ...+ h1h
m−3
m + hm−2m − (hm−31 + hm−11 hm + ...+ h1h

m−2
m + hm−3m )hm = hm−21 + hm−31 hm +

...+h1h
m−3
m +hm−2m −hm−31 hm−hm−11 h2m− ...−h1hm−1m −hm−2m = hm−21 . In column l, we have hm−2l .

2. Multiply row (m−3) by hm and subtract it from row (m−2). If we follow the same analysis as above,

in column l, we have hm−3l .

3. Continue this procedure until we subtract row 1, multiplied by hm, from row 2. The result is the

following matrix.

B̂m :=



1 · · · 1 1

h1 · · · hm−2 hm−1

...
...

hm−21 · · · hm−2m−2 hm−2m−1



4. In matrix B̂m, subtract the last column from each of the other columns. The result is the following
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matrix.

B̃m :=



0 · · · 0 1

h1 − hm−1 · · · hm−2 − hm−1 hm−1

...
...

hm−21 − hm−1 · · · hm−2m−2 − hm−1 hm−2m−1



Note that the first row of matrix B̃m consists of zeros but in the last column there is a 1. Hence, using the

cofactor expansion along the first row, we find that the determinant of B̃m is non-zero if the determinant of

the following matrix is also non-zero.

B̄m :=


h1 − hm−1 · · · hm−2 − hm−1

...
...

hm−21 − hm−1 · · · hm−2m−2 − hm−1



Note, however, that matrix B̄m is the same as matrix Am−1. By assumption, the determinant of Am−1 is

non-zero. Consequently, the determinants of B̄m, B̃m, B̂m, and Bm are non-zero. This implies that the

determinant of Am is also non-zero. �

Proof of Lemma 2.2:

Let φ : X → R be defined as a polynomial determined by h, φ(x) := a0 + a1h(x) + ...+ anh
n(x). Let Φ(X)

be the collection of all such polynomials. Φ(X) is algebra, separates points and includes constants. Hence,

by the Stone-Weierstrass Approximation Theorem, Φ(X) is dense in the set of all real-valued continuous

functions that are defined over X, C(X). Let Tp : C(X)→ R be defined as Tp(f) :=
∫
X
fdp, noting that Tp

is a continuous function. Since we know that a continuous function is determined by its restriction on the

dense subset of its domain, each Tp is determined by its restriction on Φ(X). We know (see, for instance,

Theorem 1.2 in [2]) that if Tp(f) =
∫
X
fdp =

∫
X
fdq = Tq(f) ∀f ∈ C(X), then p = q. However, since

Φ(X) is dense in C(X), it is enough to take only the polynomials from Φ(X). That is, if
∫
X
φdp =

∫
X
φdq

for each φ ∈ Φ(X), then Tp = Tq and, consequently, p = q. Take distinct p, q ∈ P (X). There must be φ,

such that
∫
X
φdp 6=

∫
X
φdq and, consequently, there must be hk, such that

∫
X
hkdp 6=

∫
X
hkdq. Otherwise∫

X
φdp =

∫
X
φdq. �
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